Skip to main content

FAST: Fundamental Analysis Support for Financial Statements. Using semantics for trading recommendations

Abstract

Trading systems are tools to aid financial analysts in the investment process in companies. This process is highly complex because a big number of variables take part in it. Furthermore, huge sets of data must be taken into account to perform a grounded investment, making the process even more complicated. In this paper we present a real trading system that has been developed using semantic technologies. These cutting-edge technologies are very useful in this context because they enable the definition of schemes that can be used for storing financial information, which, in turn, can be easily accessed and queried. Additionally, the inference capabilities of the existing reasoning engines enable the generation of a set of rules supporting this investment analysis process.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. Abarbanell, J. S., & Bushee, B. J. (1997). Fundamental analysis, future earnings, and stock prices. Journal of Accounting Research, 35(1), 1–24.

    Article  Google Scholar 

  2. Anastasakis, L., & Mort, N. (2009). Exchange rate forecasting using a combined parametric and nonparametric self-organising modelling approach. Expert Systems with Applications, 36(10), 12001–12011.

    Article  Google Scholar 

  3. Broekstra, K., Kampman, A., Van Harmelen, F. (2002). Sesame: A generic architecture for storing and querying RDF and RDF schema. The Semantic Web—ISWC 2002. 2342, 54–68

  4. Castells, P., Foncillas, B., Lara, R., Rico, M., & Alonso, J. L. (2004). Semantic web technologies for economic and financial information management. The Semantic Web: Research and Applications, 3053, 473–487.

    Article  Google Scholar 

  5. Chavarnakul, T., & Enke, D. (2008). Intelligent technical analysis based equivolume charting for stock trading using neural networks. Expert Systems with Applications, 34(2), 1004–1017.

    Article  Google Scholar 

  6. Chen, J. S., & Liao, B. P. (2007). Piecewise nonlinear goal-directed CPPI strategy. Expert Systems with Applications, 33(4), 857–869.

    Article  Google Scholar 

  7. Chen, Y., Mabu, S., Shimada, S., & Hirasawa, K. (2009). A genetic network programming with learning approach for enhanced stock trading model. Expert Systems with Applications, 36(10), 12537–12546.

    Article  Google Scholar 

  8. Fernandez Garcia, M. E., De la Cal Marin, E. A., & Quiroga Garcia, R. (2010). Improving return using risk-return adjustment and incremental training in technical trading rules with GAPs. Applied Intelligence, 33(2), 93–106.

    Article  Google Scholar 

  9. Fernandez, P., & Yzaguirre, J. (1995). IBEX 35: Análisis e investigaciones. In: (Eds.), Barcelona: Ediciones Internacionales Universitarias

  10. Fox, M. S., Barbuceanu, M., Gruninger, M., & Lin, J. (1998). An organizational ontology for enterprise modeling. Simulating organizations: Computational models of institutions and groups (pp. 131–152). Cambridge: MIT Press.

    Google Scholar 

  11. Gomez, J. M., García-Sanchez, F., Valencia-Garcia, R., Toma, I., Garcia-Moreno, C. (2009). SONAR: A semantically empowered financial search engine. International work-conference on the interplay between natural and artificial computation

  12. Haarslev, V., & Möller, R. (2003). Racer: An OWL reasoning agent for the semantic web. Proceedings of the International Workshop on Applications, Products and Services of Web-based Support Systems

  13. Horrocks, I., Patel-Schneider, P. F., Boley H., et al. (2004). SWRL: A semantic web rule language combining OWL and RuleML. W3C Member Submission

  14. Jang, M., & Sohn, J. C. (2004). Bossam: An extended rule engine for OWL Inferencing. Rules and Rule Markup Languages for the Semantic Web, 3323, 128–138.

    Article  Google Scholar 

  15. Kim, K. J. (2004). Toward global optimization of case-based reasoning systems for financial forecasting. Applied Intelligence, 21, 239–249.

    Article  Google Scholar 

  16. Kovalerchuk, B., & Vityaev, E. (2000). Data mining in finance: Advances in relational and hybrid methods. Kluwer Academic

  17. Lee, S. J., Ahn, J. J., Oh, K. J., & Kim, T. Y. (2010). Using rough set to support investment strategies of real-time trading in futures market. Applied Intelligence, 32(3), 364–377.

    Article  Google Scholar 

  18. Lo, A., Mamaysky, H., & Wang, J. (2000). Foundations of technical analysis: Computational algorithm, statistical inference, and empirical implementation. Journal of Finance, 55(4), 1705–1765.

    Article  Google Scholar 

  19. Losada, A. S., Bas, J. L., Bellido, S., Contreras, J., Benjamins, R., Gomez, J. M. (2005). Data, information and process integration with semantic web services

  20. Majhi, R., Panda, G., Majhib, B., & Sahoo, G. (2009). Efficient prediction of stock market indices using adaptive bacterial foraging optimization (ABFO) and BFO based techniques. Expert Systems with Applications, 36(6), 10097–10104.

    Article  Google Scholar 

  21. Majhi, R., Panda, G., & Sahoo, G. (2009). Development and performance evaluation of FLANN based model for forecasting of stock markets. Expert Systems with Applications, 36(3), 6800–6808.

    Article  Google Scholar 

  22. Markowitz, H. (1952). Portfolio selection. Journal of Finance, 7, 77–91.

    Google Scholar 

  23. Markowitz, H. (1999). The early history of portfolio theory. Financial Analysts Journal, 55(4), 1600–1960.

    Article  Google Scholar 

  24. McGuinness, D. L., & Harmelen, F. V. (2004). OWL web ontology language overview. W3C Recommendation

  25. Mochón, A., Quintana, D., Sáez, Y., & Isasi, P. (2008). Soft computing techniques applied to finance. Applied Intelligence, 29(2), 111–115.

    Article  Google Scholar 

  26. Modigliani, F., & Modigliani, L. (1997). Risk-adjusted performance. Journal of Portfolio Management, 23, 45–54.

    Article  Google Scholar 

  27. Mossin, J. (1966). Equilibrium in a capital asset market. Econometrica, 34(4), 768–783.

    Article  Google Scholar 

  28. Motik, B., & Studer, R. (2005). KAON2—a scalable reasoning tool for the semantic web. European Semantic Web Conference

  29. Mullins, D. W. (1982). Does the capital asset pricing model work? Harvard Business Review, 105–113

  30. Partridge, C., & Stefanova, M. (2001). A synthesis of state of the art enterprise ontologies. Lessons Learned. The BORO Program, LADSEB CNR

  31. Qian, B., & Rasheed, K. (2006). Stock market prediction with multiple classifiers. Applied Intelligence, 26, 25–33.

    Article  Google Scholar 

  32. Quah, T. S. (2009). DJIA stock selection assisted by neural network. Expert Systems with Applications, 35(1/2), 50–58.

    Google Scholar 

  33. Rodríguez-González, A., García-Crespo, Á., Colomo-Palacios, R., Guildrís-Iglesias, F., & Gómez-Berbís, J. M. (2011). CAST: Using neural networks to improve trading systems based on technical analysis by means of the RSI financial indicator. Expert Systems with Applications, 38(9), 11489–11500.

    Article  Google Scholar 

  34. Roy, A. D. (1952). Safety first and the holding of assets. Econometrica, 20(3), 431–449.

    Article  Google Scholar 

  35. Schumaker, R. P., & Chen, S. (2009). Textual analysis of stock market prediction using breaking financial news. ACM Transactions on Information Systems, 27(2)

  36. Sharpe, W. F. (1966). Mutual fund performance. Journal of Business, 39(1), 119–138.

    Article  Google Scholar 

  37. Shearer, R., Motik, B., Horrocks, I. (2008). HermiT: A highly-efficient OWL reasoner. In: A. Ruttenberg, U. Sattler, C. Dolbear (Ed.), Proc. of the 5th Int. Workshop on OWL: Experiences and Directions (OWLED 2008 EU)

  38. Sirin, E., Parsia, B., Cuenca-Grau, B., Kalyanpur, A., & Katz, Y. (2007). Pellet: A practical OWL-DL reasoner. Web Semantics: Science, Services and Agents on the World Wide Web, 5(2), 51–53.

    Article  Google Scholar 

  39. Sitte, R., & Sitte, J. (2002). Neural networks approach to the random walk dilemma of financial time series. Applied Intelligence, 16(3), 163–171.

    Article  Google Scholar 

  40. Standfield, K. (2005). Intangible finance standards: Advances in fundamental analysis & technical analysis. Elsevier Academic Press

  41. Vanstone, B., & Finnie, G. (2009). An empirical methodology for developing stockmarket trading systems using artificial neural networks. Expert Systems with Applications, 36(3), 6668–6680.

    Article  Google Scholar 

  42. Vanstone, B., & Tan, C. N. W. (2005). Artificial neural networks in financial trading. In: M. Khosrow-Pour (Ed.), Encyclopedia of information science and technology. Idea Group

  43. Wang, Y. F. (2003). Mining stock prices using fuzzy rough set system. Expert Systems with Applications, 24(1), 13–23.

    Article  Google Scholar 

  44. Wen, Q., Yang, Z., Song, Y., & Jia, P. (2010). Automatic stock decision support system based on box theory and SVM algorithm. Expert Systems with Applications, 37(2), 1015–1022.

    Article  Google Scholar 

  45. XBRL International. (2009). XBRL: eXtensible business reporting language. Retrieved June 19, 2009, from XBRL International Web site: http://www.xbrl.org

  46. Yoda, M. (1994). Predicting the Tokyo stock market. In: G. J. Deboeck (Ed.), Trading on the edge (pp. 66–79). Wiley (1994)

Download references

Acknowledgements

This work is supported by the Spanish Ministry of Science and Innovation under the project TRAZAMED (IPT-090000-2010-007).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Alejandro Rodríguez-González.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Rodríguez-González, A., Colomo-Palacios, R., Guldris-Iglesias, F. et al. FAST: Fundamental Analysis Support for Financial Statements. Using semantics for trading recommendations. Inf Syst Front 14, 999–1017 (2012). https://doi.org/10.1007/s10796-011-9321-1

Download citation

Keywords

  • Trading system
  • Semantic technologies
  • Fundamental analysis
  • Reasoning