Skip to main content

Intelligent forest fire monitoring system

Abstract

This paper presents iForestFire, an Environmental Monitoring Information System for forest fire protection. The system is composed of several components, each having a particular function. Automatic fire detection is a crucial component of the system. It is based on various complex image processing algorithms. Complexity of the system also emerges from integration, based on multi agent technology, of different environment information. The presented system contributes to the environment protection and is in use in Croatia for several years.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

References

  • Beck, K., & Andres, C. (2005). Extreme programming explained: Embrace change (2nd Edition). Addison-Wesley.

  • Bellifemine, F. L., Caire, G., & Greenwood, D. (2007). Developing multi-agent systems with JADE. John Wiley & Sons.

  • Benezeth, Y., Jodoin, P. M., Emile, B., Laurent, H., & Rosenberger, C. (2008). Review and evaluation of commonly-implemented background subtraction algorithms. Proc. 19th International Conference on Pattern Recognition, Tampa, Florida, USA, pp 1–4.

  • Bodrozic, L. J., Stipanicev, D., & Stula, M. (2006). Agent based data collecting in a forest fire monitoring system. Proc. International Conference on Software, Telecommunications and Computer Networks, Split-Dubrovnik, Croatia, pp 326–330.

  • Collins, R., Lipton, A., Kanade, T., Fujiyoshi, H., Duggins, D., Tsin, Y., et al. (2000). A system for video surveillance and monitoring. Tech. report CMU-RI-TR-00-12, Robotics Institute, Carnegie Mellon University.

  • EUMETSAT Active Fire Monitoring (FIR). http://www.eumetsat.int/. Accessed 07 December 2010.

  • Fire Monitoring, Mapping, and Modeling (Fire M3). http://cwfis.cfs.nrcan.gc.ca/en_CA/background/summary/fm3. Accessed 12 October 2010.

  • FireWatch. http://www.fire-watch.de/cms/. Accessed 29 September 2010.

  • Forest Fire Finder. http://www.ngns-is.com/html/florestas/fff_intro_eng.html. Accessed 29 September 2010.

  • Forgy, C. (1982). Rete: a fast algorithm for the many pattern/many object pattern match problem. Artificial Intelligence, 19, 17–37.

    Article  Google Scholar 

  • Fukunaga, K. (1993). Statistical pattern recognition. In C. H. Chen, L. F. Pau, & P. S. P. Wang (Eds.), Handbook of pattern recognition and computer vision (pp. 33–60). River Edge: World Scientific Publishing Co.

    Chapter  Google Scholar 

  • Han, S., Youn, H. Y., & Song, O. (2010). Efficient category-based service discovery on multi-agent platform. Information Systems Frontiers, doi:10.1007/s10796-010-9281-x

  • Isakowitz, T., Bieber, M., & Vitali, F. (1998). Web information systems. Communications of the ACM, doi:10.1145/278476.278490

  • Jain, A. K. (1989). Fundamentals of digital image processing. Prentice-Hall, Inc.

  • Jakovcevic, T., Stipanicev, D., & Krstinic, D. (2009). False Alarm Reduction in Forest fire Video Monitoring System. Proc. of MIPRO 2009, 32nd International Convention, Opatija, Croatia, 3, 265–270.

  • Krstinic, D., Stipanicev, D., & Jakovcevic, T. (2009). Histogram-based smoke segmentation in forest fire detection system. Information Technology and Control, 38(3), 237–244.

    Google Scholar 

  • MacEachren, A. M. (2010). Geovisual Analytics for Crisis Management: Moving Beyond GIS. ISCRAM'10 Conference Proceeding 2010, Seattle, USA.

  • Meer, P. (2004). Robust techniques for computer vision. In G. Medioni & S. B. Kang (Eds.), Emerging topics in computer vision (pp. 107–190). Prentice Hall.

  • Ministry of the Interior, statistical report. http://policija.hr/mup.hr/UserDocsImages/statistika/2007/statistika_pozari.pdf. Accessed 20 September 2010.

  • MODIS Rapid Response System. http://rapidfire.sci.gsfc.nasa.gov/. Accessed 10 July 2010.

  • Piccardi, M. (2004). Background subtraction techniques: a review. Proc. of IEEE SMC 2004 International Conference on Systems, Man and Cybernetics, 4, 3099–3104.

  • Puras, J. C., & Iglesias, C. A. (2009), Disasters2.0. Application of Web2.0 technologies in emergency situations. Conference on Information Systems for Crisis Response and Management, ISCRAM'09 Conference Proceeding 2009, Gothenburg, Sweden.

  • Rothermel, R. C. (1972). A mathematical model for predicting fire spread in wildland fuels, Research Paper INT-115. United States Department of Agriculture, Forest Service, Intermountain Forest and Range Experiment Station, Ogden.

  • Scott, D. W., & Sain, S. R. (2004). Multi-dimensional density estimation. In C. R. Rao & E. J. Wegman (Eds.), Handbook of statistics—data mining and computational statistics (v.23, pp. 229–263). Elsevier.

  • Seric, L. J. (2010). PhD report Agent based environmental intelligence, Faculty of Electrical Engineering, Mechanical Engineering and Naval Architecture, University of Split.

  • Stipanicev, D., Vuko T., Krstinic, D., Stula, M., & Bodrozic, L. J. (2006). Forest fire protection by advanced video detection system—croatian experiences. Proceedings of the third TIEMS Workshop-Improvement of Disaster Management System, Trogir, Croatia.

  • Stipanicev, D., Bugaric, M., & Seric, L. J. (2009a). Integration of forest fire video monitoring system and geographic information system. Proc. of the 51st Int. Symp. ELMAR 2009, Zadar, Croatia, pp 1–5.

  • Stipanicev, D., Stula, M., Krstinic, D., & Seric, L. J. (2009b). Agent based intelligent forest fire monitoring system. Proc. of MIPRO 2009, 32nd International Convention, Opatija, Croatia, 3, pp 260–265.

  • Summary Report on the Status of Environmental Monitoring and Reporting in Europe by Nesis project. http://www.nesis.eu/documents/d3.1.sop_report_revised%20version_v6.1_100331.pdf. Accessed 01 October 2010.

  • Szyperski, C. (1998). Component software: beyond object-oriented programming. Addison-Wesley.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maja Stula.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Stula, M., Krstinic, D. & Seric, L. Intelligent forest fire monitoring system. Inf Syst Front 14, 725–739 (2012). https://doi.org/10.1007/s10796-011-9299-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10796-011-9299-8

Keywords

  • Environmental Monitoring Information Systems
  • Software architecture
  • Image processing
  • Data organization
  • Fire protection