Information Systems Frontiers

, 11:539 | Cite as

Monitoring user activities in smart home environments

  • Sajid Hussain
  • Senol Zafer Erdogen
  • Jong Hyuk Park
Article

Abstract

Wireless sensor networks (WSNs) enable smart environments to create pervasive and ubiquitous applications, which give context-aware and scalable services to the end users. In this paper, we propose an architecture and design of a web application for a sensor network monitoring. Further, the variation in received signal strength indicator values is used for knowledge extraction. Experiments are conducted in an in-door room environment to determine the activities of a person. For instance, a WSN consisting of Moteiv’s Tmote Sky sensors is deployed in a bedroom to determine the sleeping behavior and other activities of a person.

Keywords

Smart home environments Wireless sensor network Pervasive computing Ubiquitous computing Intelligent monitoring 

References

  1. Akyildiz, I. F., Su, W., Sankarasubramaniam, Y., & Cayirci, E. (2002). A survey on wireless sensor networks. IEEE Communication Magazine, 40, 102–114.Google Scholar
  2. Bahl, P., & Padmanabhan, V. (2000). Radar: An in-building rf-based user location and tracking system. In INFOCOM 2000. Tel Aviv, Israel.Google Scholar
  3. Cerpa, A., Busek, N., & Estrin, D. (2003). Scale: A tool for simple connectivity assessment in lossy environments. In CENS technical report 0021.Google Scholar
  4. De, P., Basu, K., & Das, S. K. (2004). An ubiquitous architectural framework and protocol for object tracking using rfid tags. In The first annual international conference on mobile and ubiquitous systems: Networking and services (MOBIQUITOUS), August.Google Scholar
  5. Edwards, W. K., & Grinter, R. E., (2001). At home with ubiquitous computing: Seven challenges. In Proceedings of third international conference ubiquitous computing, Atlanta, 2001. Springer, LNCS.Google Scholar
  6. Erdogan, S. Z., & Hussain, S. (2007). Using received signal strength variation for energy efficient data dissemination in wireless sensor networks. In Workshop proceedings of 18th international conference on database and expert systems applications (DEXA) (pp. 620–624). Regensburg.Google Scholar
  7. Estrin, D., Bulusu, N., Heidemann, J., & Tran, T. (2003). Self-configuring localization systems: Design and experimental evaluation. ACM Transactions on Embedded Computing Systems (ACM TECS).Google Scholar
  8. Gallais, A., Parvery, H., Carle, J., Gorce, J.-M., & Simplot-Ryl, D. (2006). Efficiency impairment of wireless sensor networks protocols under realistic physical layer conditions. In 10th IEEE international conference on communication systems (ICCS 2006). Singapore.Google Scholar
  9. Ganesan, D., Krishnamachari, B., Woo, A., Culler, D., Estrin, D., & Wicker, S. (2002). Impact of radio irregularity on wireless sensor networks. In Technical report UCLA/CSD-TR 02-0013.Google Scholar
  10. Gao, T., Greenspan, D., Welsh, M., Juang, R. R., & Alm, A. (2005). Vital signs monitoring and patient tracking over a wireless network. In The 27th annual international conference of the IEEE EMBS. Shanghai, China, September.Google Scholar
  11. Ghorbel, M., Segarra, M.-T., Kerdreux, J., Thepaut, A., & Mokhtari, M. (2004). Networking and communication in smart home for people with disabilities. In ICCHP (pp. 937–944).Google Scholar
  12. Gillespie, L., Gillespie, W., Robertson, M., Lamb, S., Cumming, R., & Rowe, B. (2003). Interventions for preventing falls in elderly people. In Cochrane database of systematic reviews 2003.Google Scholar
  13. Gu, L., Jia, D., Vicaire, P., Yan, T., Luo, L., Tirumala, A., et al. (2005). Lightweight detection and classification for wireless sensor networks in realistic environments. In The 3rd ACM conference on embedded networked sensor systems. San Diego, USA, NovemberGoogle Scholar
  14. Halkidi, M., Kalogeraki, V., Gunopulos, D., Papadopoulos, D., Zeinalipour-Yazti, D., & Vlachos, M. (2006). Efficient online state tracking using sensor networks. In The 7th international conference on mobile data management (MDM’06).Google Scholar
  15. Hampapur, A., Brown, L., Connell, J., Ekin, A., Haas, N., Lu, M., et al. (2005). Smart video surveillance: Exploring the concept of multiscale spatiotemporal tracking. IEEE Signal Processing Magazine, 22, 38–51.CrossRefGoogle Scholar
  16. Kahn, J., Katz, R., & Pister, K. (1999). Next century challenges: Mobile networking for smart dust. In The ACM international conference on mobile computing and networking (Mobi Com’99). Seattle, USA, August.Google Scholar
  17. Nasipuri, A., & Li, K. (2002). A directionality based location discovery scheme for wireless sensor networks. In First ACM international workshop on wireless sensor networks and applications. Atlanta, USA.Google Scholar
  18. Priyantha, N., Chakraborthy, A., & Balakrishnan, H. (2000). The cricket location-support system. In Proceedings of international conference on mobile computing and networking (pp. 32–43). Boston, USA.Google Scholar
  19. Savarese, C., Rabaey, J. M., & Beutel, J. (2001). Locationing in distributed ad-hoc wireless sensor networks. In Proceedings of ICASSP01 (pp. 2037–2040).Google Scholar
  20. Scott, T., Wu, K., & Hoffman, D. (2006). Radio propagation patterns in wireless sensor networks: New experimental results. In IEEE international wireless communications and mobile computing conference (IWCMC’06). Vancouver, Canada, July.Google Scholar
  21. Tabar, A. M., Keshavarz, A., & Aghajan, H. (2006). Smart home care network using sensor fusion and distributed vision-based reasoning. In WSSN 2006 (pp. 145–154). ACM.Google Scholar
  22. Vogt, H. (2002). Efficient object identification with passive rfid tags. Lecture Notes in Computer Science (LNCS), 2414, 98–113.Google Scholar
  23. Woo, A., Tong, T., & Culler, D. (2003). Taming the underlying challenges of reliable multihop routing in sensor networks. In SenSys 2003. Los Angeles, USA.Google Scholar
  24. Ye, W., Heidemann, J., & Estrin, D. (2002). An energy-efficient mac protocol for wireless sensor networks. In INFOCOM 2002.Google Scholar
  25. Zhou, G., He, T., Krishnamurthy, S., & Stankovic, J. A. (2004). Impact of radio irregularity on wireless sensor networks. In The international conference on mobile systems, applications, and services (MobiSys). Boston, USA, June.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Sajid Hussain
    • 1
  • Senol Zafer Erdogen
    • 2
  • Jong Hyuk Park
    • 3
  1. 1.Jodrey School of Computer ScienceAcadia UniversityWolfvilleCanada
  2. 2.Faculty of EngineeringMaltepe UniversityIstanbulTurkey
  3. 3.Department of Computer Science and EngineeringKyungnam UniversityMasanKorea

Personalised recommendations