Information Systems Frontiers

, Volume 9, Issue 4, pp 439–448 | Cite as

EXEM: Efficient XML data exchange management for mobile applications

  • Yuri Natchetoi
  • Huaigu WuEmail author
  • Gilbert Babin
  • Serhan Dagtas


In the past decade, the number of mobile devices has increased significantly. These devices are in turn showing more computational capabilities. It is therefore possible to envision a near future where client applications may be deployed on these devices. There are, however, constraints that hinder this deployment, especially the limited communication bandwidth and storage space available. This paper describes the Efficient XML Data Exchange Manager (EXEM) that combines context-dependent lossy and lossless compression mechanisms used to support lightweight exchange of objects in XML format between server and client applications. The lossy compression mechanism reduces the size of XML messages by using known information about the application. The lossless compression mechanism decouples data and metadata (compression dictionary) content. We illustrate the use of EXEM with a prototype implementation of the lossless compression mechanism that shows the optimization of the available resources on the server and the mobile client. These experimental results demonstrate the efficiency of the EXEM approach for XML data exchange in the context of mobile application development.


XML compression Lossy compression Lossless compression Mobile business applications 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Cannataro, M., Carelli, G., Pugliese, A., & Sacca, D. (2001). Semantic lossy compression of XML data. Knowledge Representation Meets Databases 2001.
  2. Cheney, J. (2000). Compressing XML with multiplexed hierarchical PPM models. Proc. of the IEEE Data Compression Conf., March, 163–172.Google Scholar
  3. Choi, B. (2006). Document decomposition for XML compression: A heuristic approach. DASFAA 2006, LNCS, 3382, Singapore.Google Scholar
  4. Gailly, J., & Adler, M. “gzip 1.2.4”,
  5. Hariharan, S., & Shankar, P. (2006). Evaluating the role of context in syntax directed compression of XML documents. IEEE Data Compression Conf. Washington, DC: IEEE Computer Society, p. 453.Google Scholar
  6. Hopcroft, J. E., & Ullman, J. D. (1979). Introduction to Automata Theory, Languages and Computation. Boston, MA: Addison-Wesley.Google Scholar
  7. Huffman, D. (1952). A method for the construction of minimum-redundancy codes. In Proc. of the I.R.E. Cambridge: Massachusetts Institute of Technology, pp 1098–1101.Google Scholar
  8. Kropf, P., Babin, G., & Hulot, A. (1998). Réduction des besoins en communication de CORBA. Colloque Int’l sur les Nouvelles Technologies de la Répartition (NOTERE’98), 73–84, Montréal, Canada.Google Scholar
  9. Leighton, G., Müldner, T., & Diamond, J. (2005). TREECHOP: A tree-based query-able compressor for XML. Proc. 9th Canadian Conf. on Information Theory, pp. 115–118, Montreal, Quebec.Google Scholar
  10. Liefke, H., & Suciu, D. (2000). XMill: An efficient compressor for XML data. Proc. of the ACM SIGMOD Int’l Conf. on Management of Data, 153–164.Google Scholar
  11. MacKay, D. J. (2003). Information theory, inference and learning algorithms. Cambridge: Cambridge University Press.Google Scholar
  12. Min, J. K., Park, M. J., & Chung, C. W. (2003). XPRESS: A queriable compression for XML data. Proc. of the ACM SIGMOD Int’l Conf. on Management of Data, 122–133.Google Scholar
  13. Natchetoi, Y., Wu, H., & Babin, G. (2007). A context-dependent xml compression approach to enable business applications on mobile devices. Proc. of Euro-Par.Google Scholar
  14. Qureshi, M. H., & Samadzadeh, M. H. (2005). Determining the complexity of XML documents. ITCC’05, II, 416–421.Google Scholar
  15. Shannon, C. (1948). A mathematical theory of communication. Bell System Techical Journal, 27, 398–403.Google Scholar
  16. Taylor, C. (2006). Global mobile phone connections hit 2.5bn.
  17. Tolani, P. M., & Haritsa, J. R. (2002). XGRIND: A query-friendly XML compressor. IEEE Proc. of the 18th Int’l Conf. on Data Engineering, 225–234.Google Scholar
  18. White, G., Brutzman, D., & Williams, S. (eds.) (2006). Efficient XML Interchange Measurements Note. World Wide Web Consortium, 18 July 2006.
  19. Williams, S. D., & Haggar, P. (eds.) (2005). XML Binary Characterization Measurement Methodologies. World Wide Web Consortium, 31 March 2005.

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • Yuri Natchetoi
    • 1
  • Huaigu Wu
    • 1
    Email author
  • Gilbert Babin
    • 2
  • Serhan Dagtas
    • 3
  1. 1.SAP Labs MontréalMontréalCanada
  2. 2.Information Technologies, HEC MontréalMontréalCanada
  3. 3.Information ScienceUniversity of Arkansas at Little RockLittle RockUSA

Personalised recommendations