Skip to main content
Log in

Interferons in vitreoretinal diseases; a review on their clinical application, and mechanism of action

  • Review
  • Published:
International Ophthalmology Aims and scope Submit manuscript

Abstract

Purpose

This review investigates the therapeutic benefits of interferons (IFNs) in vitreoretinal diseases, focusing on their regulatory roles in innate immunological reactions and angiogenesis. The study aims to categorize the clinical outcomes of IFN applications and proposes a molecular mechanism underlying their action.

Methods

A systematic review was conducted using MEDLINE/PubMed, Web of Science, EMBASE, and Google Scholar databases to identify randomized clinical trials, case series, and case-control studies related to IFNs’ impact on vitreoretinal diseases (1990–2022). The data synthesis involved an in-depth analysis of the anti-inflammatory and anti-angiogenesis effects of IFNs across various studies.

Results

Our findings indicate that IFNs exhibit efficacy in treating inflammation-associated vitreoretinal disorders. However, a lack of sufficient evidence exists regarding the suitability of IFNs in angiogenesis-associated vitreoretinal diseases like choroidal neovascularization and diabetic retinopathies. The synthesis of data suggests that IFNs may not be optimal for managing advanced stages of angiogenesis-associated disorders.

Conclusion

While IFNs emerge as promising therapeutic candidates for inflammation-related vitreoretinal diseases, caution is warranted in their application for angiogenesis-associated disorders, especially in advanced stages. Further research is needed to elucidate the nuanced molecular pathways of IFN action, guiding their targeted use in specific vitreoretinal conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. De Veer MJ, Holko M, Frevel M, Walker E, Der S, Paranjape JM et al (2001) Functional classification of interferon-stimulated genes identified using microarrays. J Leukoc Biol 69(6):912–920

    Article  PubMed  Google Scholar 

  2. Medrano RF, Hunger A, Mendonça SA, Barbuto JAM, Strauss BE (2017) Immunomodulatory and antitumor effects of type I interferons and their application in cancer therapy. Oncotarget 8(41):71249

    Article  PubMed  PubMed Central  Google Scholar 

  3. Albini A, Marchisone C, Del Grosso F, Benelli R, Masiello L, Tacchetti C et al (2000) Inhibition of angiogenesis and vascular tumor growth by interferon-producing cells: a gene therapy approach. Am J Pathol 156(4):1381–1393

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Sheppard P, Kindsvogel W, Xu W, Henderson K, Schlutsmeyer S, Whitmore TE et al (2003) IL-28, IL-29 and their class II cytokine receptor IL-28R. Nat Immunol 4(1):63–68

    Article  CAS  PubMed  Google Scholar 

  5. Kotenko SV, Gallagher G, Baurin VV, Lewis-Antes A, Shen M, Shah NK et al (2003) IFN-λs mediate antiviral protection through a distinct class II cytokine receptor complex. Nat Immunol 4(1):69–77

    Article  CAS  PubMed  Google Scholar 

  6. Wang H, Hu H, Zhang K (2017) Overview of interferon: characteristics, signaling and anti-cancer effect. Arch Biotechnol Biomed 1:1–16

    Article  Google Scholar 

  7. Lee AJ, Ashkar AA (2018) The dual nature of type I and type II interferons. Frontiers in immunology, 2061

  8. Lazear HM, Schoggins JW, Diamond MS (2019) Shared and distinct functions of type I and type III interferons. Immunity 50(4):907–923

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Platanias LC (2005) Mechanisms of type-I-and type-II-interferon-mediated signalling. Nat Rev Immunol 5(5):375–386

    Article  CAS  PubMed  Google Scholar 

  10. Bekisz J, Baron S, Balinsky C, Morrow A, Zoon KC (2010) Antiproliferative properties of type I and type II interferon. Pharmaceuticals 3(4):994–1015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Yoshimura T, Sonoda K-H, Sugahara M, Mochizuki Y, Enaida H, Oshima Y et al (2009) Comprehensive analysis of inflammatory immune mediators in vitreoretinal diseases. PLoS ONE 4(12):e8158

    Article  PubMed  PubMed Central  Google Scholar 

  12. Banerjee S, Savant V, Scott RA, Curnow SJ, Wallace GR, Murray PI (2007) Multiplex bead analysis of vitreous humor of patients with vitreoretinal disorders. Invest Ophthalmol Vis Sci 48(5):2203–2207

    Article  PubMed  Google Scholar 

  13. Afarid M, Lashkarizadeh H, Ashraf MJ, Nowroozzadeh MH, Shafiee SM (2016) The efficacy of intravitreal interferon alpha-2b for the treatment of experimental endotoxin-induced uveitis. Indian J Ophthalmol 64(5):376

    Article  PubMed  PubMed Central  Google Scholar 

  14. Afarid M, Meshksar A, Salehi A, Safarpour MM (2020) Evaluation of the effect of topical interferon α2b as a complementary treatment of macular edema of patients with diabetic retinopathy: a double-blind placebo-controlled randomized clinical trial study. Retina 40(5):936–942

    Article  CAS  PubMed  Google Scholar 

  15. Afarid M, Azimi A, Malekzadeh M (2019) Evaluation of serum interferons in patients with age-related macular degeneration. J Res Med Sci Official J Isfahan Univ Med Sci 24:24

    CAS  Google Scholar 

  16. Kötter I, Zierhut M, Eckstein A, Vonthein R, Ness T, Günaydin I et al (2003) Human recombinant interferon alfa-2a for the treatment of Behcet’s disease with sight threatening posterior or panuveitis. Br J Ophthalmol 87(4):423–431

    Article  PubMed  PubMed Central  Google Scholar 

  17. Krause L, Turnbull JR, Torun N, Pleyer U, Zouboulis CC, Foerster MH (2004) Interferon alfa-2a in the treatment of ocular Adamantiades-Behçet’s disease. Adamantiades-Behçet’s Disease, 511–9

  18. Sobacı G, Erdem Ü, Durukan AH, Erdurman C, Bayer A, Köksal S et al (2010) Safety and effectiveness of interferon alpha-2a in treatment of patients with Behçet’s uveitis refractory to conventional treatments. Ophthalmology 117(7):1430–1435

    Article  PubMed  Google Scholar 

  19. Park J-Y, Chung Y-R, Lee K, Song JH, Lee E-S (2015) Clinical experience of interferon alfa-2a treatment for refractory uveitis in Behcet’s disease. Yonsei Med J 56(4):1158–1162

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Bielefeld P, Devilliers H, Deschasse C, Saadoun D, Sève P, Muselier A et al (2016) Potential of pegylated interferon alpha-2a in Behçet uveitis: a report of five cases. Ocul Immunol Inflamm 24(5):599–602

    PubMed  Google Scholar 

  21. Lee JH, Lee CS, Lee SC (2018) Interferon alpha-2a treatment for refractory Behcet uveitis in Korean patients. BMC Ophthalmol 18(1):1–4

    Article  CAS  Google Scholar 

  22. Eser-Ozturk H, Sullu Y (2019) The results of interferon-alpha treatment in Behçet uveitis. Ocular Immunol Inflamm

  23. Celiker H, Kazokoglu H, Direskeneli H (2019) Long-term efficacy of pegylated interferon alpha-2b in Behçet’s uveitis: a small case series. Ocul Immunol Inflamm 27(1):15–22

    Article  CAS  PubMed  Google Scholar 

  24. Yalçindag N, Köse HC (2020) Comparison of the treatment results for Behçet uveitis in patients treated with infliximab and interferon. Ocul Immunol Inflamm 28(2):305–314

    Article  PubMed  Google Scholar 

  25. Atik BK, Altan Ç, Başarir B (2020) Therapeutic outcomes of interferon-alpha-2a treatment in Behçet uveitis Turkiye. Klinikleri J Ophthalmol 29(4):294–299

    Article  Google Scholar 

  26. Qian Y, Qu Y, Gao F, Pei M, Liang A, Xiao J et al (2021) Comparison of the safety and efficacy of interferon alpha-2a and cyclosporine-a when combined with glucocorticoid in the treatment of refractory Behçet’s uveitis: a randomized controlled prospective study. Front Pharmacol 12:699903

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Becker M, Heiligenhaus A, Hudde T, Storch-Hagenlocher B, Wildemann B, Barisani-Asenbauer T et al (2005) Interferon as a treatment for uveitis associated with multiple sclerosis. Br J Ophthalmol 89(10):1254–1257

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Mackensen F, Jakob E, Springer C, Dobner BC, Wiehler U, Weimer P et al (2013) Interferon versus methotrexate in intermediate uveitis with macular edema: results of a randomized controlled clinical trial. Am j ophthalmol 156(3):478–486

    Article  CAS  PubMed  Google Scholar 

  29. Plskova J, Greiner K, Forrester JV (2007) Interferon-α as an effective treatment for noninfectious posterior uveitis and panuveitis. Am j ophthalmol 144(1):55–61

    Article  CAS  PubMed  Google Scholar 

  30. Yalcinbayir O, Yucel AA, Kaderli B, Gelisken O (2009) Subconjunctival interferon α-2a application in a case with serpiginous choroidopathy. Retinal Cases Brief Rep 3(2):214–217

    Article  Google Scholar 

  31. Kirkpatrick J, Dick A, Forrester J (1993) Clinical experience with interferon alfa-2a for exudative age-related macular degeneration. British j Ophthal 77(12):766–770

  32. Brasnu E, Wechsler B, Bron A, Charlotte F, Bliefeld P, Lehoang P et al (2005) Efficacy of interferon-α for the treatment of Kaposi’s sarcoma herpesvirus-associated uveitis. Am J Ophthalmol 140(4):746–748

    Article  CAS  PubMed  Google Scholar 

  33. Invernizzi A, Iannaccone F, Marchi S, Mastrofilippo V, Coassin M, Fontana L, et al (2018) Interferon alpha-2a for the treatment of post-infectious uveitis secondary to presumed intraocular tuberculosis. Ocular Immunol Inflamm

  34. Deuter CM, Koetter I, Guenaydin I, Stuebiger N, Zierhut M (2006) Interferon alfa-2a: a new treatment option for long lasting refractory cystoid macular edema in uveitis?: A pilot study. Retina 26(7):786–791

    Article  PubMed  Google Scholar 

  35. Deuter CM, Kötter I, Günaydin I, Stübiger N, Doycheva DG, Zierhut M (2009) Efficacy and tolerability of interferon alpha treatment in patients with chronic cystoid macular oedema due to non-infectious uveitis. Br J Ophthalmol 93(7):906–913

    Article  CAS  PubMed  Google Scholar 

  36. Maleki A, Aghaei H, Lee S (2018) Topical interferon alpha 2b in the treatment of refractory pseudophakic cystoid macular edema. Am J Ophthalmol Case Rep 10:203–205

    Article  PubMed  PubMed Central  Google Scholar 

  37. Deuter CM, Fausel J, Doycheva D, Zierhut M (2019) Long-term results of therapy with interferon alpha in chronic uveitic macular edema. Invest Ophthalmol Visual Sci 60(9):3515

    Google Scholar 

  38. Dimopoulos S, Deuter CM, Blumenstock G, Zierhut M, Dimopoulou A, Voykov B, et al (2019) Interferon alpha for refractory pseudophakic cystoid macular edema (irvine-gass syndrome). Ocular Immunol Inflamm

  39. Aksu-Ceylan N, Cebeci Z, Altinkurt E, Kir N, Oray M, Tugal-Tutkun I (2021) Interferon Alpha-2a for the treatment of cystoid macular edema secondary to acute retinal necrosis. Ocular Immunol Inflamm, 1–10

  40. Maleki A, Stephenson AP, Hajizadeh F (2020) Topical interferon alpha 2b in the treatment of refractory diabetic macular edema. J Ophthalmic Vis Res 15(4):453

    PubMed  PubMed Central  Google Scholar 

  41. Faghihi H, Inanloo B, Mirzaee A, Fadakar K, Mirshahi A, Ebrahimiadib N et al (2022) Evaluation of the additive effect of interferon α 2b with monthly intravitreal injection of bevacizumab in refractory diabetic macular edema. International Journal of Retina and Vitreous 8(1):1–9

    Article  Google Scholar 

  42. Couret C, Servant M, Lebranchu P, Hamidou M, Weber M (2020) Efficacy and safety of interferon alpha 2a and pegylated interferon alpha 2a in inflammatory macular edema. Ocul Immunol Inflamm 28(2):329–336

    Article  CAS  PubMed  Google Scholar 

  43. Skowsky WR, Siddiqui T, Hodgetts D, Lambrou FH Jr, Stewart MW, Foster MT Jr (1996) A pilot study of chronic recombinant interferon-alfa 2a for diabetic proliferative retinopathy: metabolic effects and opthalmologic effects. J Diabetes Complications 10(2):94–99

    Article  CAS  PubMed  Google Scholar 

  44. Fardeau C, Simon A, Rodde B, Viscogliosi F, Labalette P, Looten V et al (2017) Interferon-alpha2a and systemic corticosteroid in monotherapy in chronic uveitis: results of the randomized controlled BIRDFERON study. Am J Ophthalmol 177:182–194

    Article  CAS  PubMed  Google Scholar 

  45. Leibovitch I, Loewenstein A, Alster Y, Rosenblatt I, Lazar M, Yassur Y et al (2004) Interferon alpha-2a for proliferative diabetic retinopathy after complete laser panretinal photocoagulation treatment slack incorporated thorofare. NJ 35:16–22

    Google Scholar 

  46. Loughnan MS, Heriot WJ, O'Day J (1992) Treatment of subfoveal choroidal neovascular membranes with systemic interferonl α 2a. Australian and New Zealand. J Ophthalmol 20(3):173-175

  47. Thomas MA, Ibanez HE (1993) Interferon alfa-2a in the treatment of subfoveal choroidal neovascularization. Am J Ophthalmol 115(5):563–568

    Article  CAS  PubMed  Google Scholar 

  48. Gillies M, Sarks J, Beaumont P, Hunyor A, McKay D, Kearns M et al (1993) Treatment of choroidal neovascularisation in age-related macular degeneration with interferon alfa-2a and alfa-2b. Br J Ophthalmol 77(12):759–765

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Poliner LS, Tornambe PE, Michelson PE, Heitzmann JG (1993) Interferon alpha-2a for subfoveal neovascularization in age-related macular degeneration. Ophthalmology 100(9):1417–1424

    Article  CAS  PubMed  Google Scholar 

  50. Chan CK, Kempin SJ, Noble SK, Palmer GA (1994) The treatment of choroidal neovascular membranes by alpha interferon: an efficacy and toxicity study. Ophthalmology 101(2):289–300

    Article  CAS  PubMed  Google Scholar 

  51. Engler C, Sander B, Villumsen J, Lund-Andersen H (1994) Interferon alfa-2a modifies the course of subfoveal and juxtafoveal choroidal neovascularisation. Br J Ophthalmol 78(10):749–753

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Engler CB, Sander B, Koefoed P, Larsen M, Vinding T, Lund-Andersen H (1993) Interferon alpha-2a treatment of patients with subfoveal neovascular macular degeneration: a pilot investigation. Acta Ophthalmol 71(1):27–31

    Article  CAS  Google Scholar 

  53. Thoelen A, Menozzi M, Huber C, Messmer E (1995) Treatment of choroidal neovascularization in age-related macular degeneration with interferon alpha-2a: a short term, nonrandomized pilot study. Ger J Ophthalmol 4(3):137–143

    CAS  PubMed  Google Scholar 

  54. Guyer DR, Adamis AP, Yannuzzi LA, Gragoudas ES, Coscas GJ, Brancato R et al (1997) Interferon alfa-2a is ineffective for patients with choroidal neovascularization secondary to age-related macular degeneration: results of a prospective randomized placebo-controlled clinical trial. Arch Ophthalmol 115(7):865–872

    Article  Google Scholar 

  55. Cirino AC, JEEVAN R MATHURA J, Jampol LM (2006) Resolution of activity (choroiditis and choroidal neovascularization) of chronic recurrent punctate inner choroidopathy after treatment with interferon B-1A. Retina26(9):1091–1092

  56. Sobacı G, Bayraktar Z, Bayer A (2005) ORIGINAL ARTICLE, interferon alpha-2A treatment for serpiginous choroiditis. Ocul Immunol Inflamm 13(1):59–66

    Article  PubMed  Google Scholar 

  57. Lewis ML, Davis J, Chuang E (1993) Interferon alfa-2a in the treatment of exudative age-related macular degeneration. Graefe’s arch clin exp ophthalmol 231(11):615–618

    Article  CAS  Google Scholar 

  58. Jaakkola A, Anttila PM, Immonen I (1994) Interferon alpha-2a in the treatment of exudative senile macular degeneration. Acta Ophthalmol 72(5):545–549

    Article  CAS  Google Scholar 

  59. Lee RW, Nicholson LB, Sen H, Chan C-C, Wei L, Nussenblatt RB, et al.(2014) editors. Autoimmune and autoinflammatory mechanisms in uveitis. Seminars in immunopathology; Springer

  60. Bodaghi B, Cassoux N, Wechsler B, Hannouche D, Fardeau C, Papo T et al (2001) Chronic severe uveitis: etiology and visual outcome in 927 patients from a single center. Medicine 80(4):263–270

    Article  CAS  PubMed  Google Scholar 

  61. Barisani-Asenbauer T, Maca SM, Mejdoubi L, Emminger W, Machold K, Auer H (2012) Uveitis-a rare disease often associated with systemic diseases and infections-a systematic review of 2619 patients. Orphanet J Rare Dis 7(1):1–7

    Article  Google Scholar 

  62. Schrijver B, Kolijn PM, Ten Berge JC, Nagtzaam NM, van Rijswijk AL, Swagemakers SM et al (2022) Vitreous proteomics, a gateway to improved understanding and stratification of diverse uveitis aetiologies. Acta Ophthalmol 100:403

    Article  CAS  PubMed  Google Scholar 

  63. Tugal-Tutkun I (2009) Behçet’s uveitis. Middle East Afr J Ophthalmol 16(4):219

    PubMed  PubMed Central  Google Scholar 

  64. Tugal-Tutkun I, Onal S, Altan-Yaycioglu R, Altunbas HH, Urgancioglu M (2004) Uveitis in Behçet disease: an analysis of 880 patients. Am J Ophthalmol 138(3):373–380

    Article  PubMed  Google Scholar 

  65. Mackensen F, Max R, Becker MD (2009) Interferons and their potential in the treatment of ocular inflammation. Clin Ophthalmol, 559–66

  66. Deuter C, Stübiger N, Zierhut M (2012) Interferon-α therapy in noninfectious uveitis. New Treat Noninfectious Uveitis 51:90–97

    Article  CAS  Google Scholar 

  67. Plskova J, Greiner K, Muckersie E, Duncan L, Forrester JV (2006) Interferon-α: a key factor in autoimmune disease? Invest Ophthalmol Vis Sci 47(9):3946–3950

    Article  PubMed  Google Scholar 

  68. Sleijfer S, Bannink M, Van Gool AR, Kruit WH, Stoter G (2005) Side effects of interferon-α therapy. Pharm World Sci 27(6):423–431

    Article  CAS  PubMed  Google Scholar 

  69. Dusheiko G (1997) Side effects of α interferon in chronic hepatitis C. Hepatology 26(S3):112S-S121

    Article  CAS  PubMed  Google Scholar 

  70. Rentiya ZS, Wells M, Bae J, Chen K-J, Chao A-N, Turgeon N et al (2019) Interferon-α-induced retinopathy in chronic hepatitis C treatment: summary, considerations, and recommendations. Graefe’s Arch Clin Exp Ophthalmol 257(3):447–452

    Article  CAS  Google Scholar 

  71. Foster GR (2010) Pegylated interferons for the treatment of chronic hepatitis C. Drugs 70(2):147–165

    Article  CAS  PubMed  Google Scholar 

  72. Bodaghi B, Gendron G, Wechsler B, Terrada C, Cassoux N, Lemaitre C et al (2007) Efficacy of interferon alpha in the treatment of refractory and sight threatening uveitis: a retrospective monocentric study of 45 patients. Br J Ophthalmol 91(3):335–339

    Article  PubMed  Google Scholar 

  73. Hasanreisoglu M, Cubuk MO, Ozdek S, Gurelik G, Aktas Z, Hasanreisoglu B (2017) Interferon alpha-2a therapy in patients with refractory Behçet uveitis. Ocul Immunol Inflamm 25(1):71–75

    Article  CAS  PubMed  Google Scholar 

  74. Deuter CM, Xenitidis T, Schoenfisch B, Doycheva D, Zierhut M, Koetter I (2011) Interim analysis of the clinical trial INCYTOB (interferon alpha-2a versus cyclosporin a for the treatment of severe ocular Behçet’s disease). Investig Ophthalmol Visual Sci 52(14):4254

    Google Scholar 

  75. De Simone L, Invernizzi A, Aldigeri R, Mastrofilippo V, Marvisi C, Gozzi F et al (2022) Effectiveness of infliximab and interferon alpha-2a for the treatment of Behçet’s uveitis: customizing therapy according to the clinical features. Ocul Immunol Inflamm 30(2):506–514

    Article  PubMed  Google Scholar 

  76. Vann RR, Karp CL (1999) Perilesional and topical interferon alfa-2b for conjunctival and corneal neoplasia. Ophthalmology 106(1):91–97

    Article  CAS  PubMed  Google Scholar 

  77. Nemet AY, Sharma V, Benger R (2006) Interferon α 2b treatment for residual ocular surface squamous neoplasia unresponsive to excision, cryotherapy and mitomycin-C. Clin Exp Ophthalmol 34(4):375–377

    Article  PubMed  Google Scholar 

  78. Mastropasqua R, D’Aloisio R, Di Nicola M, Di Martino G, Lamolinara A, Di Antonio L et al (2018) Relationship between aqueous humor cytokine level changes and retinal vascular changes after intravitreal aflibercept for diabetic macular edema. Sci Rep 8(1):1–9

    Article  CAS  Google Scholar 

  79. Minaker SA, Mason RH, Lahaie Luna G, Farahvash A, Garg A, Bhambra N et al (2022) Changes in aqueous and vitreous inflammatory cytokine levels in diabetic macular oedema: a systematic review and meta-analysis. Acta Ophthalmol 100(1):e53–e70

    Article  CAS  PubMed  Google Scholar 

  80. de Smet MD, Okada AA (2010) Cystoid macular edema in uveitis. Macular Edema 47:136–147

    Article  Google Scholar 

  81. Young S, Larkin G, Branley M, Lightman S (2001) Safety and efficacy of intravitreal triamcinolone for cystoid macular oedema in uveitis. Clin Exp Ophthalmol 29(1):2–6

    Article  CAS  PubMed  Google Scholar 

  82. Butler NJ, Suhler EB, Rosenbaum JT (2012) Interferon alpha 2b in the treatment of uveitic cystoid macular edema. Ocul Immunol Inflamm 20(2):86–90

    Article  CAS  PubMed  Google Scholar 

  83. De Simone L, Sangiovanni A, Aldigeri R, Mastrofilippo V, Bolletta E, Invernizzi A et al (2020) Interferon alpha-2a treatment for post-uveitic refractory macular edema. Ocul Immunol Inflamm 28(2):322–328

    Article  PubMed  Google Scholar 

  84. Stiefel HC, Kopplin LJ, Albini T, Chang M, Vegunta S, Suhler EB (2021) Treatment of refractory cystoid macular edema with pegylated interferon alfa-2a: a retrospective chart review. Ocul Immunol Inflamm 29(3):566–571

    Article  CAS  PubMed  Google Scholar 

  85. Kawali A, Sanjay S, Mohan A, Mahendradas P, Shroff S, Shetty R (2022) Intensive topical interferon therapy in uveitic macular edema. Indian J Ophthalmol 70(8):2986–2989

    Article  PubMed  PubMed Central  Google Scholar 

  86. Pleyer U, Neri P, Deuter C (2021) New pharmacotherapy options for noninfectious posterior uveitis. Int Ophthalmol 41:2265–2281

    Article  PubMed  PubMed Central  Google Scholar 

  87. Liu CY, Francis JH, Abramson DH (2018) Ocular side effects of systemically administered chemotherapy. UpToDate Waltham, MA: UpToDate

  88. Zhang H, Houadj L, Wu KY, Tran SD (2024) Diagnosing and managing uveitis associated with immune checkpoint inhibitors: a review. Diagnostics 14(3):336

    Article  PubMed  PubMed Central  Google Scholar 

  89. Modugno RL, Testi I, Pavesio C (2021) Intraocular therapy in noninfectious uveitis. J Ophthalmic Inflamm Infection 11:1–8

    Article  Google Scholar 

  90. Fu L, Li Y, Yao S, Guo Q, You Y, Zhu X et al (2021) Autosomal recessive rod-cone dystrophy associated with compound heterozygous variants in ARL3 gene. Front cell dev biol 9:635424

    Article  PubMed  PubMed Central  Google Scholar 

  91. Hood DC, Cideciyan AV, Roman AJ, Jacobson SG (1995) Enhanced S cone syndrome: evidence for an abnormally large number of S cones. Vision Res 35(10):1473–1481

    Article  CAS  PubMed  Google Scholar 

  92. Fishman GA, Peachey NS (1989) Rod-cone dystrophy associated with a rod system electroretinogram obtained under photopic conditions. Ophthalmology 96(6):913–918

    Article  CAS  PubMed  Google Scholar 

  93. Semeraro F, Morescalchi F, Russo A, Gambicorti E, Pilotto A, Parmeggiani F et al (2019) Central serous chorioretinopathy: pathogenesis and management. Clinical Ophthalmol (Auckland, NZ) 13:2341

    Article  CAS  Google Scholar 

  94. Kawali A, Snehith R, Singh V, Sanjay S, Mahendradas P, Shetty R (2021) Topical interferon–a novel treatment for pseudophakic macular edema. Indian J Ophthalmol 69(9):2355

    Article  PubMed  PubMed Central  Google Scholar 

  95. Aghaei H, Es’haghi A (2022) Improvement of pseudophakic cystoid macular edema with subconjunctival injections of interferon α2b: a case report. Am J Ophthalmol Case Rep 26:101504

    Article  PubMed  PubMed Central  Google Scholar 

  96. Cellini M, Balducci N, Strobbe E, Campos EC (2013) Subtenon injection of natural leukocyte interferon α-2a in diabetic macular edema: a case report. BMC Ophthalmol 13(1):1–4

    Article  Google Scholar 

  97. Qian Z, Fardeau C, Cardoso JN, Jellab B, Fan X, LeHoang P (2015) Effect of interferon α2a in cystoid macular edema due to intraocular infection. Eur J Ophthalmol 25(5):431–436

    Article  PubMed  Google Scholar 

  98. Oray M, Onal S, Uludag G, Akbay AK, Tugal-Tutkun I (2017) Interferon alpha for the treatment of cystoid macular edema associated with presumed ocular tuberculosis. J Ocul Pharmacol Ther 33(4):304–312

    Article  CAS  PubMed  Google Scholar 

  99. Deuter CM, Gelisken F, Stübiger N, Zierhut M, Doycheva D (2011) Successful treatment of chronic pseudophakic macular edema (Irvine-Gass syndrome) with interferon alpha: a report of three cases. Ocul Immunol Inflamm 19(3):216–218

    Article  CAS  PubMed  Google Scholar 

  100. Kawali A, Srinivasan S, Mahendradas P, Shetty R (2022) Topical interferon in recurrent inflammatory macular edema following a cat bite. European J Ophthalmol 32(6):NP32–NP5

    Article  Google Scholar 

  101. Barth T, Zeman F, Helbig H, Gamulescu M-A (2019) Intravitreal anti-VEGF treatment for choroidal neovascularization secondary to traumatic choroidal rupture. BMC Ophthalmol 19(1):1–6

    Article  Google Scholar 

  102. Raig ET, Jones NB, Varker KA, Benniger K, Go MR, Biber JL et al (2008) VEGF secretion is inhibited by interferon-alpha in several melanoma cell lines. J Interferon Cytokine Res 28(9):553–562

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Ross C, Engler CB, Sander B, Bendtzen K (2002) IFN-α antibodies in patients with age-related macular degeneration treated with recombinant human IFN-α 2a. J Interferon Cytokine Res 22(4):421–426

    Article  CAS  PubMed  Google Scholar 

  104. Lückoff A, Caramoy A, Scholz R, Prinz M, Kalinke U, Langmann T (2016) Interferon-beta signaling in retinal mononuclear phagocytes attenuates pathological neovascularization. EMBO Mol Med 8(6):670–678

    Article  PubMed  PubMed Central  Google Scholar 

  105. Thomas CN, Sim DA, Lee WH, Alfahad N, Dick AD, Denniston AK et al (2022) Emerging therapies and their delivery for treating age-related macular degeneration. Br J Pharmacol 179(9):1908–1937

    Article  CAS  PubMed  Google Scholar 

  106. Behnke V, Langmann T (2020) IFN-β signaling dampens microglia reactivity but does not prevent from light-induced retinal degeneration. Biochemistry and Biophysics Reports 24:100866

    Article  PubMed  PubMed Central  Google Scholar 

  107. Duh EJ, Sun JK, Stitt AW (2017) Diabetic retinopathy: current understanding, mechanisms, and treatment strategies. JCI insight, 2(14)

  108. Daniel AL, Houlihan JL, Blum JS, Walsh JP (2009) Type B insulin resistance developing during interferon-α therapy. Endocr Pract 15(2):153–157

    Article  PubMed  PubMed Central  Google Scholar 

  109. Dan-Brezis I, Zahavi A, Axer-Siegel R, Nisgav Y, Dahbash M, Weinberger D et al (2020) Inflammation, angiogenesis and coagulation interplay in a variety of retinal diseases. Acta Ophthalmol 98(5):e559–e562

    Article  CAS  PubMed  Google Scholar 

  110. Afarid M, Torabi-Nami M, Nemati A, Khosravi A, Malekzadeh M (2015) Brain-derived neurotrophic factor in patients with advanced age-related macular degeneration. Int J Ophthalmol 8(5):991

    PubMed  PubMed Central  Google Scholar 

  111. Afarid M, Namvar E, Sanie-Jahromi F (2020) Diabetic retinopathy and BDNF: a review on its molecular basis and clinical applications. J Ophthalmol, 2020

  112. Schoenberger SD, Kim SJ (2013) Nonsteroidal anti-inflammatory drugs for retinal disease. Int J Inflamm, 2013

  113. Paulus YM, Sodhi A (2016) Anti-angiogenic therapy for retinal disease. Springer, Pharmacologic Therapy of Ocular Disease, pp 271–307

    Google Scholar 

  114. Rezzola S, Loda A, Corsini M, Semeraro F, Annese T, Presta M et al (2020) Angiogenesis-inflammation cross talk in diabetic retinopathy: novel insights from the chick embryo chorioallantoic membrane/human vitreous platform. Front Immunol 11:581288

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Chen L, Deng H, Cui H, Fang J, Zuo Z, Deng J et al (2018) Inflammatory responses and inflammation-associated diseases in organs. Oncotarget 9(6):7204

    Article  PubMed  Google Scholar 

  116. Ashley NT, Weil ZM, Nelson RJ (2012) Inflammation: mechanisms, costs, and natural variation. Annu Rev Ecol Evol Syst 43(385):2012

    Google Scholar 

  117. Ribatti D, Crivellato E (2012) Sprouting angiogenesis, a reappraisal. Dev Biol 372(2):157–165

    Article  CAS  PubMed  Google Scholar 

  118. Jain RK (2003) Molecular regulation of vessel maturation. Nat Med 9(6):685–693

    Article  CAS  PubMed  Google Scholar 

  119. Udan RS, Culver JC, Dickinson ME (2013) Understanding vascular development. Wiley Interdiscip Rev Dev Biol 2(3):327–346

    Article  CAS  PubMed  Google Scholar 

  120. Wallsh JO, Gallemore RP (2021) Anti-VEGF-resistant retinal diseases: A review of the latest treatment options. Cells 10(5):1049

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Yang S, Zhao J, Sun X (2016) Resistance to anti-VEGF therapy in neovascular age-related macular degeneration: a comprehensive review. Drug Des Dev Ther 10:1857

    CAS  Google Scholar 

  122. Yang P, Huang G, Du L, Ye Z, Hu K, Wang C et al (2019) Long-term efficacy and safety of interferon alpha-2a in the treatment of Chinese patients with Behçet’s uveitis not responding to conventional therapy. Ocul Immunol Inflamm 27(1):7–14

    Article  CAS  PubMed  Google Scholar 

  123. Egwuagu CE, Alhakeem SA, Mbanefo EC (2021) Uveitis: molecular pathogenesis and emerging therapies. Front Immunol 1293:623725

    Article  Google Scholar 

  124. Cunha-Vaz J, Travassos A (1984) Breakdown of the blood-retinal barriers and cystoid macular edema. Surv Ophthalmol 28:485–492

    Article  PubMed  Google Scholar 

  125. Bolívar S, Anfossi R, Humeres C, Vivar R, Boza P, Muñoz C et al (2018) IFN-β plays both pro-and anti-inflammatory roles in the rat cardiac fibroblast through differential STAT protein activation. Front Pharmacol 9:1368

    Article  PubMed  PubMed Central  Google Scholar 

  126. Indraccolo S (2010) Interferon-α as angiogenesis inhibitor: learning from tumor models. Autoimmunity 43(3):244–247

    Article  CAS  PubMed  Google Scholar 

  127. Karar J, Maity A (2011) PI3K/AKT/mTOR pathway in angiogenesis. Front Mol Neurosci 4:51

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Ucuzian AA, Gassman AA, East AT, Greisler HP (2010) Molecular mediators of angiogenesis. J Burn Care Res 31(1):158–175

    Article  PubMed  Google Scholar 

  129. Zhang L, Yang N, Park J-W, Katsaros D, Fracchioli S, Cao G et al (2003) Tumor-derived vascular endothelial growth factor up-regulates angiopoietin-2 in host endothelium and destabilizes host vasculature, supporting angiogenesis in ovarian cancer. Can Res 63(12):3403–3412

    CAS  Google Scholar 

  130. Hammes H-P, Lin J, Wagner P, Feng Y, Vom Hagen F, Krzizok T et al (2004) Angiopoietin-2 causes pericyte dropout in the normal retina: evidence for involvement in diabetic retinopathy. Diabetes 53(4):1104–1110

    Article  CAS  PubMed  Google Scholar 

  131. Lobov IB, Brooks PC, Lang RA (2002) Angiopoietin-2 displays VEGF-dependent modulation of capillary structure and endothelial cell survival in vivo. Proc Natl Acad Sci 99(17):11205–11210

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Hakanpaa L, Sipila T, Leppanen V-M, Gautam P, Nurmi H, Jacquemet G et al (2015) Endothelial destabilization by angiopoietin-2 via integrin β1 activation. Nat Commun 6(1):1–12

    Article  Google Scholar 

  133. Lee PY, Li Y, Kumagai Y, Xu Y, Weinstein JS, Kellner ES et al (2009) Type I interferon modulates monocyte recruitment and maturation in chronic inflammation. Am J Pathol 175(5):2023–2033

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Hubbard NE, Lim D, Mukutmoni M, Cai A, Erickson KL (2005) Expression and regulation of murine macrophage angiopoietin-2. Cell Immunol 234(2):102–109

    Article  CAS  PubMed  Google Scholar 

  135. Buie JJ, Renaud LL, Muise-Helmericks R, Oates JC (2017) IFN-α negatively regulates the expression of endothelial nitric oxide synthase and nitric oxide production: implications for systemic lupus erythematosus. J Immunol 199(6):1979–1988

    Article  CAS  PubMed  Google Scholar 

  136. Wada H, Nagano H, Yamamoto H, Arai I, Ota H, Nakamura M et al (2007) Combination therapy of interferon-α and 5-fluorouracil inhibits tumor angiogenesis in human hepatocellular carcinoma cells by regulating vascular endothelial growth factor and angiopoietins. Oncol Rep 18(4):801–809

    CAS  PubMed  Google Scholar 

  137. Vazquez A (2011) The universe of normal and cancer cell line responses to anticancer treatment: lessons for cancer therapy. Nature Precedings, 1-1

  138. Hamamcioglu K, Reder A (2007) Interferon-β regulates cytokines and BDNF: greater effect in relapsing than in progressive multiple sclerosis. Mult Scler J 13(4):459–470

    Article  CAS  Google Scholar 

  139. Afarid M, Bahari H, Sanie-Jahromi F (2023) In vitro evaluation of apoptosis, inflammation, angiogenesis, and neuroprotection gene expression in retinal pigmented epithelial cell treated with interferon α−2b. J Interf Cytokine Res 43:299

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the directors of Shiraz University of Medical Sciences for supporting this research. The authors would like to thank Ms. A. Keivanshekouh at the Research Consultation Center (RCC) of Shiraz University of Medical Sciences for her invaluable assistance in improving the use of English in the manuscript.

Funding

This study was supported by Shiraz University of Medical Science (Grant# 22323).

Author information

Authors and Affiliations

Authors

Contributions

F.SJ. and M.A. designed the project. F.SJ., A.A., and A.M. were involved in obtaining the data. All authors were involved in writing the manuscript and revising the final version.

Corresponding author

Correspondence to Fatemeh Sanie-Jahromi.

Ethics declarations

Conflict of interest

The authors report no commercial or proprietary interest in any product or concept discussed in this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Afarid, M., Azimi, A., Meshksar, A. et al. Interferons in vitreoretinal diseases; a review on their clinical application, and mechanism of action. Int Ophthalmol 44, 223 (2024). https://doi.org/10.1007/s10792-024-03144-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10792-024-03144-3

Keywords

Navigation