Skip to main content

Advertisement

Log in

The effect of transepithelial corneal collagen cross-linking treatment on optical quality of the cornea in keratoconus: 12-month clinical results

  • Original Paper
  • Published:
International Ophthalmology Aims and scope Submit manuscript

Abstract

Purpose

To evaluate the effect of transepithelial corneal collagen crosslinking (CXL) treatment on the optical performance of the cornea at 12-month follow-up after CXL in patients with progressive keratoconus.

Methods

One hundred and ten eyes of 67 patients were included. The following corneal optical aberrations over the 4-mm-diameter pupil were recorded via Sirius dual-scanning corneal tomography: total, anterior and posterior amount of corneal higher order aberrations [HOAs], vertical coma, horizontal coma, vertical trefoil, oblique trefoil, and spherical aberration, and Strehl ratio of point spread function (PSF).

Results

There were significant improvements in mean root mean square error values for corneal total HOA, total coma, anterior HOA, anterior coma, and vertical coma following CXL (P > 0.05, for all). No significant changes were found in the posterior aberometric parameters. PSF value did not change after CXL (P > 0.05). The corneal topographic measurements not revealed a change in the mean simulated keratometry-1, simulated keratometry-2, and maximum keratometry compared with the baseline measurements (P > 0.05, for all). At 12 months, there was a significant improvement in the uncorrected (UCVA) and best corrected (BCVA) visual acuity (P < 0.001, both). Most corneal aberrations correlated significantly with postoperative BCVA, but changes in HOAs were not statistically associated with improvements in visual acuity.

Conclusions

Transepithelial CXL was effective in stabilizing the keratometric indices and improving the most corneal aberrations in keratoconic eyes 1 year after the procedure. While the healing effect on aberrations after CXL was in total and anterior parameters, no significant changes were observed in the posterior surface. In addition, it was observed that transepithelial CXL treatment did not cause a significant change in PSF distribution data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Davidson AE, Hayes S, Hardcastle AJ, Tuft SJ (2014) The pathogenesis of keratoconus. Eye (Lond) 28(2):189–95. https://doi.org/10.1038/eye.2013.278. (Epub 2013 Dec 20)

    Article  CAS  PubMed  Google Scholar 

  2. Rozema JJ, Hastings GD, Marsack J, Koppen C, Applegate RA (2021) Modeling refractive correction strategies in keratoconus. J Vis 21(10):18. https://doi.org/10.1167/jov.21.10.18.PMID:34554182;PMCID:PMC8475278

    Article  PubMed  PubMed Central  Google Scholar 

  3. Barbero S, Marcos S, Merayo-Lloves J, Moreno-Barriuso E (2002) Validation of the estimation of corneal aberrations from videokeratography in keratoconus. J Refract Surg. 18(3):263–70. https://doi.org/10.3928/1081-597X-20020501-09

    Article  PubMed  Google Scholar 

  4. Rabinowitz YS (1998) Keratoconus. Surv Ophthalmol 42(4):297–319. https://doi.org/10.1016/s0039-6257(97)00119-7

    Article  CAS  PubMed  Google Scholar 

  5. Applegate RA, Hilmantel G, Howland HC, Tu EY, Starck T, Zayac EJ (2000) Corneal first surface optical aberrations and visual performance. J Refract Surg 16(5):507–14. https://doi.org/10.3928/1081-597X-20000901-04

    Article  CAS  PubMed  Google Scholar 

  6. Schlegel Z, Lteif Y, Bains HS, Gatinel D (2009) Total, corneal, and internal ocular optical aberrations in patients with keratoconus. J Refract Surg 25(10 Suppl):S951–S957. https://doi.org/10.3928/1081597X-20090915-10

    Article  PubMed  Google Scholar 

  7. Alió JL, Shabayek MH (2006) Corneal higher order aberrations: a method to grade keratoconus. J Refract Surg 22(6):539–545. https://doi.org/10.3928/1081-597X-20060601-05

    Article  PubMed  Google Scholar 

  8. Bühren J, Kühne C, Kohnen T (2007) Defining subclinical keratoconus using corneal first-surface higher-order aberrations. Am J Ophthalmol 143(3):381–389. https://doi.org/10.1016/j.ajo.2006.11.062

    Article  PubMed  Google Scholar 

  9. Gobbe M, Guillon M (2005) Corneal wavefront aberration measurements to detect keratoconus patients. Cont Lens Anterior Eye 28(2):57–66. https://doi.org/10.1016/j.clae.2004.12.001. (Epub 2005 Feb 25)

    Article  PubMed  Google Scholar 

  10. Montés-Micó R, Ferrer-Blasco T, Cerviño A, González-Méijome JM, Puchades C (2008) Clinical use of the ocular point spread function for retinal image quality assessment. Expert Rev Ophthalmol 3(5):523–527. https://doi.org/10.1586/17469899.3.5.523

    Article  Google Scholar 

  11. Omar Yousif M, Elkitkat RS, Abdelsadek Alaarag N, Shams A, Gharieb HM (2020) Relation of corneal astigmatism with various corneal image quality parameters in a large cohort of naïve corneas. Clin Ophthalmol 4(14):2203–2210. https://doi.org/10.2147/OPTH.S264706

    Article  Google Scholar 

  12. Montés-Micó R, Ferrer-Blasco T, Cerviño A, González-Méijome JM, Puchades C (2008) Clinical use of the ocular point spread function for retinal image quality assessment. Exp Rev Ophthalmol 3(5):523–527. https://doi.org/10.1586/17469899.3.5.523

    Article  Google Scholar 

  13. Seery LS, McLaren JW, Kittleson KM, Patel SV (2011) Retinal point-spread function after corneal transplantation for Fuchs’ dystrophy. Invest Ophthalmol Vis Sci 52(2):1003–1008. https://doi.org/10.1167/iovs.10-5375

    Article  PubMed  Google Scholar 

  14. Alio JL, D’Oria F, Toto F, Balgos J, Palazon A, Versaci F, Alio Del Barrio JL (2021) Retinal image quality with multifocal, EDoF, and accommodative intraocular lenses as studied by pyramidal aberrometry. Eye Vis (Lond) 8(1):37. https://doi.org/10.1186/s40662-021-00258-y

    Article  PubMed  Google Scholar 

  15. Saad S, Saad R, Jouve L, Kallel S, Trinh L, Goemaere I, Borderie V, Bouheraoua N (2020) Corneal crosslinking in keratoconus management. J Fr Ophtalmol 43(10):1078–1095. https://doi.org/10.1016/j.jfo.2020.07.002. (Epub 2020)

    Article  CAS  PubMed  Google Scholar 

  16. Wollensak G, Iomdina E (2009) Biomechanical and histological changes after corneal crosslinking with and without epithelial debridement. J Cataract Refract Surg 35(3):540–546. https://doi.org/10.1016/j.jcrs.2008.11.036

    Article  PubMed  Google Scholar 

  17. Rush SW, Rush RB (2017) Epithelium-off versus transepithelial corneal collagen crosslinking for progressive corneal ectasia: a randomised and controlled trial. Br J Ophthalmol 101(4):503–508. https://doi.org/10.1136/bjophthalmol-2016-308914. (Epub 2016 Jul 7)

    Article  PubMed  Google Scholar 

  18. Spoerl E, Hoyer A, Pillunat LE, Raiskup F (2011) Corneal cross-linking and safety issues. Open Ophthalmol J 11(5):14–16. https://doi.org/10.2174/1874364101105010014

    Article  Google Scholar 

  19. Borchert GA, Kandel H, Watson SL (2023) Epithelium-on versus epithelium-off corneal collagen crosslinking for keratoconus: a systematic review and meta-analysis. Graefes Arch Clin Exp Ophthalmol. https://doi.org/10.1007/s00417-023-06287-8

    Article  PubMed  Google Scholar 

  20. Polat N, Aydin EY, Tuncer İ (2014) Optical aberrations and wavefront. Turk J Ophthalmol 44:306–311

    Article  Google Scholar 

  21. Li J, Xue C, Zhang Y, Liu C, Du J, Li Y, Liu J, Wei S, Wu Z (2022) Diagnostic value of corneal higher-order aberrations in keratoconic eyes. Int Ophthalmol. https://doi.org/10.1007/s10792-022-02518-9

    Article  PubMed  PubMed Central  Google Scholar 

  22. Maeda N (2009) Clinical applications of wavefront aberrometry—a review. Clin Exp Ophthalmol 37(1):118–129. https://doi.org/10.1111/j.1442-9071.2009.02005.x

    Article  PubMed  Google Scholar 

  23. Ortiz-Toquero S, Fernandez I, Martin R (2020) Classification of keratoconus based on anterior corneal high-order aberrations: a cross-validation study. Optom Vis Sci 97(3):169–177. https://doi.org/10.1097/OPX.0000000000001489

    Article  PubMed  Google Scholar 

  24. Piñero DP, Alió JL, Alesón A, Escaf M, Miranda M (2009) Pentacam posterior and anterior corneal aberrations in normal and keratoconic eyes. Clin Exp Optom 92(3):297–303. https://doi.org/10.1111/j.1444-0938.2009.00357.x. (Epub 2009 Feb 24)

    Article  PubMed  Google Scholar 

  25. Vinciguerra R, Romano MR, Camesasca FI, Azzolini C, Trazza S, Morenghi E, Vinciguerra P (2013) Corneal cross-linking as a treatment for keratoconus: four-year morphologic and clinical outcomes with respect to patient age. Ophthalmology 120(5):908–916. https://doi.org/10.1016/j.ophtha.2012.10.023. (Epub 2013 Jan 3)

    Article  PubMed  Google Scholar 

  26. Wisse RP, Gadiot S, Soeters N, Godefrooij DA, Imhof SM, van der Lelij A (2016) Higher-order aberrations 1 year after corneal collagen crosslinking for keratoconus and their independent effect on visual acuity. J Cataract Refract Surg 42(7):1046–1052. https://doi.org/10.1016/j.jcrs.2016.04.021

    Article  PubMed  Google Scholar 

  27. Bühren J, Kook D, Yoon G, Kohnen T (2010) Detection of subclinical keratoconus by using corneal anterior and posterior surface aberrations and thickness spatial profiles. Invest Ophthalmol Vis Sci 51(7):3424–3432. https://doi.org/10.1167/iovs.09-4960. (Epub 2010 Feb 17)

    Article  PubMed  Google Scholar 

  28. Greenstein SA, Fry KL, Hersh MJ, Hersh PS (2012) Higher-order aberrations after corneal collagen crosslinking for keratoconus and corneal ectasia. J Cataract Refract Surg 38(2):292–302. https://doi.org/10.1016/j.jcrs.2011.08.041

    Article  PubMed  Google Scholar 

  29. Belin MW, Kundu G, Shetty N, Gupta K, Mullick R, Thakur P (2020) ABCD: a new classification for keratoconus. Indian J Ophthalmol 68(12):2831–2834. https://doi.org/10.4103/ijo.IJO_2078_20

    Article  PubMed  PubMed Central  Google Scholar 

  30. Vinciguerra P, Albè E, Trazza S, Rosetta P, Vinciguerra R, Seiler T, Epstein D (2009) Refractive, topographic, tomographic, and aberrometric analysis of keratoconic eyes undergoing corneal cross-linking. Ophthalmology 116(3):369–378. https://doi.org/10.1016/j.ophtha.2008.09.048. (Epub 2009 Jan 22)

    Article  PubMed  Google Scholar 

  31. Maeda N, Fujikado T, Kuroda T, Mihashi T, Hirohara Y, Nishida K, Watanabe H, Tano Y (2002) Wavefront aberrations measured with Hartmann-Shack sensor in patients with keratoconus. Ophthalmology 109(11):1996–2003. https://doi.org/10.1016/s0161-6420(02)01279-4

    Article  PubMed  Google Scholar 

  32. Kandel S, Chaudhary M, Mishra SK, Joshi ND, Subedi M, Puri PR, Gyawali P, Bist J, Kandel H (2022) Evaluation of corneal topography, pachymetry and higher order aberrations for detecting subclinical keratoconus. Ophthalmic Physiol Opt 42(3):594–608. https://doi.org/10.1111/opo.12956. (Epub 2022 Feb 11)

    Article  PubMed  Google Scholar 

  33. Uysal BS, Sarac O, Yaman D, Akcay E, Cagil N (2018) Optical Performance of the cornea one year following keratoconus treatment with corneal collagen cross-linking. Curr Eye Res 43(12):1415–1421. https://doi.org/10.1080/02713683.2018.1501802. (Epub 2018 Jul 30)

    Article  PubMed  Google Scholar 

  34. Hersh PS, Lai MJ, Gelles JD, Lesniak SP (2018) Transepithelial corneal crosslinking for keratoconus. J Cataract Refract Surg 44(3):313–322. https://doi.org/10.1016/j.jcrs.2017.12.022

    Article  PubMed  Google Scholar 

  35. Rossi S, Orrico A, Santamaria C, Romano V, De Rosa L, Simonelli F, De Rosa G (2015) Standard versus trans-epithelial collagen cross-linking in keratoconus patients suitable for standard collagen cross-linking. Clin Ophthalmol 18(9):503–509. https://doi.org/10.2147/OPTH.S73991

    Article  Google Scholar 

  36. Kobashi H, Rong SS, Ciolino JB (2018) Transepithelial versus epithelium-off corneal crosslinking for corneal ectasia. J Cataract Refract Surg. 44(12):1507–1516. https://doi.org/10.1016/j.jcrs.2018.08.021. (Epub 2018 Oct 9)

    Article  PubMed  PubMed Central  Google Scholar 

  37. D’Oria F, Palazón A, Alio JL (2021) Corneal collagen cross-linking epithelium-on vs. epithelium-off: a systematic review and meta-analysis. Eye Vis (Lond) 8(1):34. https://doi.org/10.1186/s40662-021-00256-0

    Article  PubMed  Google Scholar 

  38. Ghanem RC, Santhiago MR, Berti T, Netto MV, Ghanem VC (2014) Topographic, corneal wavefront, and refractive outcomes 2 years after collagen crosslinking for progressive keratoconus. Cornea 33(1):43–48. https://doi.org/10.1097/ICO.0b013e3182a9fbdf

    Article  PubMed  Google Scholar 

Download references

Funding

The authors declare that no funds, grants, or other support were received during the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection and analysis were performed by Sebnem Kaya Ergen and Sevgi Subasi. The first draft of the manuscript was written by Sebnem Kaya Ergen and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Sebnem Kaya Ergen.

Ethics declarations

Conflict of interest

The authors report no conflicts of interest.

Ethical approval

All procedures in this study were performed in accordance with the guidelines of the Declaration of Helsinki and were approved by the Local Ethics Committee of Kocaeli University (2021/328).

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kaya Ergen, S., Subaşı, S., Yılmaz Tuğan, B. et al. The effect of transepithelial corneal collagen cross-linking treatment on optical quality of the cornea in keratoconus: 12-month clinical results. Int Ophthalmol 44, 146 (2024). https://doi.org/10.1007/s10792-024-03089-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10792-024-03089-7

Keywords

Navigation