Skip to main content

Advertisement

Log in

CircRNA HLCS regulates lens epithelial cell apoptosis via miR-338-3p/BPNT1 axis

  • Original Paper
  • Published:
International Ophthalmology Aims and scope Submit manuscript

Abstract

Purpose

The purpose of this study was to investigate the effect of circ_HLCS on age-related cataract (ARC).

Methods

Circ_HLCS, microRNA (miR)-338-3p, and bisphosphate 3′-nucleotidase 1 (BPNT1) were quantified by quantitative real-time polymerase chain reaction or western blot. Cell proliferation and cell viability were assessed by the 5-Ethynyl-2′-deoxyuridinr and cell counting kit-8 assays. Cell apoptosis was detected by flow cytometry. Targeted correlations among circ_HLCS, miR-338-3p, and BPNT1 were verified by the dual-luciferase reporter and RNA pull-down assays.

Results

circ_HLCS was diminished in ARC tissues and UV-treated SRA01/04 cells. Elevated content of circ_HLCS undermined UV-induced cell proliferation inhibition and apoptosis. Mechanistically, circ_HLCS directly targeted miR-338-3p, and circ_HLCS regulated BPNT1 expression through miR-338-3p. Furthermore, reduction of miR-338-3p ameliorated UV-induced SRA01/04 cell damage by increasing BPNT1 expression.

Conclusion

Taken together, these data suggested that circ_HLCS inhibited apoptosis of UV-treated SRA01/04 cells by miR-338-3p/BPNT1 axis. Therefore, circ_HLCS might be a potential therapeutic target for ARC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

The analyzed data sets generated during the present study are available from the corresponding author on reasonable request.

References

  1. Allen D, Vasavada A (2006) Cataract and surgery for cataract. BMJ 333(7559):128–132. https://doi.org/10.1136/bmj.333.7559.128

    Article  PubMed  PubMed Central  Google Scholar 

  2. Liu YC, Wilkins M, Kim T, Malyugin B, Mehta JS (2017) Cataracts. Lancet 390(10094):600–612. https://doi.org/10.1016/S0140-6736(17)30544-5

    Article  PubMed  Google Scholar 

  3. Liu X, Liu B, Zhou M, Fan F, Yu M, Gao C, Lu Y, Luo Y (2018) Circular RNA HIPK3 regulates human lens epithelial cells proliferation and apoptosis by targeting the miR-193a/CRYAA axis. Biochem Biophys Res Commun 503(4):2277–2285. https://doi.org/10.1016/j.bbrc.2018.06.149

    Article  PubMed  CAS  Google Scholar 

  4. Rao GN, Khanna R, Payal A (2011) The global burden of cataract. Curr Opin Ophthalmol 22(1):4–9. https://doi.org/10.1097/ICU.0b013e3283414fc8

    Article  PubMed  Google Scholar 

  5. Sanger HL, Klotz G, Riesner D, Gross HJ, Kleinschmidt AK (1976) Viroids are single-stranded covalently closed circular RNA molecules existing as highly base-paired rod-like structures. Proc Natl Acad Sci U S A 73(11):3852–3856. https://doi.org/10.1073/pnas.73.11.3852

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  6. Liu J, Liu T, Wang X, He A (2017) Circles reshaping the RNA world: from waste to treasure. Mol Cancer 16(1):58. https://doi.org/10.1186/s12943-017-0630-y

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  7. Chen X, Zhou R, Shan K, Sun Y, Yan B, Sun X, Wang J (2020) Circular RNA expression profiling identifies glaucoma-related circular RNAs in various chronic ocular hypertension rat models. Front Genet 11:556712. https://doi.org/10.3389/fgene.2020.556712

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  8. Li XM, Ge HM, Yao J, Zhou YF, Yao MD, Liu C, Hu HT, Zhu YX, Shan K, Yan B et al (2018) Genome-wide identification of circular rnas as a novel class of putative biomarkers for an ocular surface disease. Cell Physiol Biochem 47(4):1630–1642. https://doi.org/10.1159/000490982

    Article  PubMed  CAS  Google Scholar 

  9. Guo J, Xiao F, Ren W, Zhu Y, Du Q, Li Q, Li X (2021) Circular ribonucleic acid circFTO promotes angiogenesis and impairs blood-retinal barrier via targeting the miR-128–3p/thioredoxin interacting protein axis in diabetic retinopathy. Front Mol Biosci 8:685466. https://doi.org/10.3389/fmolb.2021.685466

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  10. Hansen TB, Jensen TI, Clausen BH, Bramsen JB, Finsen B, Damgaard CK, Kjems J (2013) Natural RNA circles function as efficient microRNA sponges. Nature 495(7441):384–388. https://doi.org/10.1038/nature11993

    Article  PubMed  CAS  Google Scholar 

  11. Tay Y, Rinn J, Pandolfi PP (2014) The multilayered complexity of ceRNA crosstalk and competition. Nature 505(7483):344–352. https://doi.org/10.1038/nature12986

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. Fan C, Liu X, Li W, Wang H, Teng Y, Ren J, Huang Y (2019) Circular RNA circ KMT2E is up-regulated in diabetic cataract lenses and is associated with miR-204–5p sponge function. Gene 710:170–177. https://doi.org/10.1016/j.gene.2019.05.054

    Article  PubMed  CAS  Google Scholar 

  13. Wang Y, Wu Z, Huang Y, Zhang Y (2021) Hsa_circ_0004058 inhibits apoptosis of SRA01/04 cells by promoting autophagy via miR-186/ATG7 axis. Exp Eye Res 211:108721. https://doi.org/10.1016/j.exer.2021.108721

    Article  PubMed  CAS  Google Scholar 

  14. He J, Xie P, Ouyang J (2022) Circ_0122396 protects human lens epithelial cells from hydrogen peroxide-induced injury by binding to miR-15a-5p to stimulate FGF1 expression. Curr Eye Res 47(2):246–255. https://doi.org/10.1080/02713683.2021.1978100

    Article  PubMed  CAS  Google Scholar 

  15. Liang S, Dou S, Li W, Huang Y (2020) Profiling of circular RNAs in age-related cataract reveals circZNF292 as an antioxidant by sponging miR-23b-3p. Aging (Albany NY) 12(17):17271–17287. https://doi.org/10.18632/aging.103683

    Article  PubMed  CAS  Google Scholar 

  16. Cui G, Wang L, Huang W (2020) Circular RNA HIPK3 regulates human lens epithelial cell dysfunction by targeting the miR-221–3p/PI3K/AKT pathway in age-related cataract. Exp Eye Res 198:108128. https://doi.org/10.1016/j.exer.2020.108128

    Article  PubMed  CAS  Google Scholar 

  17. Abdelkader H, Alany RG, Pierscionek B (2015) Age-related cataract and drug therapy: opportunities and challenges for topical antioxidant delivery to the lens. J Pharm Pharmacol 67(4):537–550. https://doi.org/10.1111/jphp.12355

    Article  PubMed  CAS  Google Scholar 

  18. Hayashi R, Hayashi S, Sakai M, Arai K, Chikuda M, Machida S (2018) Gender differences in mRNA expression of aquaporin 8 and glutathione peroxidase in cataractous lens following intake of an antioxidant supplement. Exp Eye Res 168:28–32. https://doi.org/10.1016/j.exer.2018.01.001

    Article  PubMed  CAS  Google Scholar 

  19. Bai J, Yu N, Mu H, Dong L, Zhang X (2018) Histidine protects human lens epithelial cells against H2 O2 -induced oxidative stress injury through the NF-small ka. CyrillicB pathway J Cell Biochem 119(2):1637–1645. https://doi.org/10.1002/jcb.26323

    Article  CAS  Google Scholar 

  20. Erol Tinaztepe O, Ay M, Eser E (2017) Nuclear and mitochondrial DNA of age-related cataract patients are susceptible to oxidative damage. Curr Eye Res 42(4):583–588. https://doi.org/10.1080/02713683.2016.1200100

    Article  PubMed  CAS  Google Scholar 

  21. Wang Y, Li F, Zhang G, Kang L, Guan H (2016) Ultraviolet-B induces ERCC6 repression in lens epithelium cells of age-related nuclear cataract through coordinated DNA hypermethylation and histone deacetylation. Clin Epigenet 8:62. https://doi.org/10.1186/s13148-016-0229-y

    Article  CAS  Google Scholar 

  22. Wang Y, Li F, Zhang G, Kang L, Qin B, Guan H (2015) Altered DNA methylation and expression profiles of 8-oxoguanine DNA glycosylase 1 in lens tissue from age-related cataract patients. Curr Eye Res 40(8):815–821. https://doi.org/10.3109/02713683.2014.957778

    Article  PubMed  CAS  Google Scholar 

  23. Wang M, Fu Y, Gao C, Jia Y, Huang Y, Liu L, Wang X, Wang W, Kong W (2016) Cartilage oligomeric matrix protein prevents vascular aging and vascular smooth muscle cells senescence. Biochem Biophys Res Commun 478(2):1006–1013. https://doi.org/10.1016/j.bbrc.2016.08.004

    Article  PubMed  CAS  Google Scholar 

  24. Dayang W, Dongbo P (2017) Taurine protects lens epithelial cells against ultraviolet B-induced apoptosis. Curr Eye Res 42(10):1407–1411. https://doi.org/10.1080/02713683.2016.1255759

    Article  PubMed  Google Scholar 

  25. Lytle JR, Yario TA, Steitz JA (2007) Target mRNAs are repressed as efficiently by microRNA-binding sites in the 5′ UTR as in the 3′ UTR. Proc Natl Acad Sci U S A 104(23):9667–9672. https://doi.org/10.1073/pnas.0703820104

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. Tkatchenko AV, Luo X, Tkatchenko TV, Vaz C, Tanavde VM, Maurer-Stroh S, Zauscher S, Gonzalez P, Young TL (2016) Large-scale microRNA expression profiling identifies putative retinal miRNA-mRNA signaling pathways underlying form-deprivation myopia in mice. PLoS ONE 11(9):e0162541. https://doi.org/10.1371/journal.pone.0162541

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  27. Zhu J, Gong L, Zhao B (2020) MicroRNA-4328 promotes lens epithelial cell apoptosis by targeting NLR family, apoptosis inhibitory protein in age-related cataract. Cell Biochem Funct 38(2):149–157. https://doi.org/10.1002/cbf.3453

    Article  PubMed  CAS  Google Scholar 

  28. Lu H, Zhang Q, Sun Y, Wu D, Liu L (2020) LINC00689 induces gastric cancer progression via modulating the miR-338-3p/HOXA3 axis. J Gene Med 22(12):e3275. https://doi.org/10.1002/jgm.3275

    Article  PubMed  CAS  Google Scholar 

  29. Liu J, Cao L, Zhao N, Feng Y, Yu Z, Li Y, Teng C, Hu J, Li T (2019) miR3383p inhibits A549 lung cancer cell proliferation and invasion by targeting AKT and betacatenin signaling pathways. Mol Med Rep 20(1):33–40. https://doi.org/10.3892/mmr.2019.10215

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Liu G, Guo W, Rao M, Qin J, Hu F, Li K (2020) circRNA hsa_circ_104566 sponged miR-338–3p to promote hepatocellular carcinoma progression. Cell Transpl 29:963689720963948. https://doi.org/10.1177/0963689720963948

    Article  Google Scholar 

  31. Hudson BH, York JD (2012) Roles for nucleotide phosphatases in sulfate assimilation and skeletal disease. Adv Biol Regul 52(1):229–238. https://doi.org/10.1016/j.advenzreg.2011.11.002

    Article  PubMed  CAS  Google Scholar 

  32. Hudson BH, York JD (2014) Tissue-specific regulation of 3′-nucleotide hydrolysis and nucleolar architecture. Adv Biol Regul 54:208–213. https://doi.org/10.1016/j.jbior.2013.11.002

    Article  PubMed  CAS  Google Scholar 

  33. Hudson BH, Frederick JP, Drake LY, Megosh LC, Irving RP, York JD (2013) Role for cytoplasmic nucleotide hydrolysis in hepatic function and protein synthesis. Proc Natl Acad Sci USA 110(13):5040–5045. https://doi.org/10.1073/pnas.1205001110

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Not applicable

Funding

This work was supported by the Fund of Xi’an Science and Technology Bureau (NO. 20YXYJ0008).

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization and Methodology: LS, FL and SB; Formal analysis and Data curation: SB and CB; Validation and Investigation: LS and FL; Writing—original draft preparation and Writing—review and editing: LS, FL, and SB; Approval of final manuscript: all authors.

Corresponding author

Correspondence to Shuwei Bai.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Ethical approval

The present study was approved by the Ethical Review Committee of Xi’an People’s Hospital (Xi’an Fourth Hospital).

Informed consent

Written informed consent was obtained from all enrolled patients.

Consent for publication

Patients agree to participate in this work.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, L., Li, F., Bai, S. et al. CircRNA HLCS regulates lens epithelial cell apoptosis via miR-338-3p/BPNT1 axis. Int Ophthalmol 44, 142 (2024). https://doi.org/10.1007/s10792-024-03082-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10792-024-03082-0

Keywords

Navigation