Skip to main content

Advertisement

Log in

Assessment of the specificity of corvis biomechanical index-laser vision correction (CBI-LVC) in stable corneas after phototherapeutic keratectomy

  • Original Paper
  • Published:
International Ophthalmology Aims and scope Submit manuscript

Abstract

Purpose

The Corvis Biomechanical Index-Laser Vision Correction (CBI-LVC) is a biomechanical index to detect ectasia in post-refractive surgery patients (PRK, LASIK, SMILE). This study aims to evaluate the distribution of the CBI-LVC in stable patients who underwent Phototherapeutic Keratectomy (PTK) compared to PRK patients.

Methods

Patients who underwent PRK and PTK performed between 2000 and 2018 in Humanitas Research Hospital, Rozzano, Milan, Italy and remained stable for at least four years post-surgery were included. All eyes were examined with the Corvis ST (Oculus, Germany), whose output allows the calculation of the CBI-LVC. The distribution and specificity of the CBI-LVC in the two populations were estimated using a Wilcoxon Mann–Whitney test and compared.

Results

175 eyes of 148 patients were included (85 eyes of 50 PTK patients and 90 eyes of 90 PRK patients). The distribution of CBI-LVC in the two groups showed a minor difference, with a median value in PRK patients of 0.000 (95% CI 0.000; 0.002) and 0.008 (95% CI 0.000; 0.037) in PTK patients (Mann–Whitney U test p = 0.023). The statistical analysis showed that the CBI-LVC provided a specificity of 92.22% in the PRK group, while in the PTK group it was 82.35%. Nevertheless, this difference was not statistically significant (Chi-squared test with Yates, p = 0.080).

Conclusion

CBI-LVC provided similar specificity in stable PTK patients compared to those who underwent PRK. These results suggest that the CBI-LVC could be a useful tool to aid corneal surgeons in managing PTK patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Spadea L, Cantera E, Cortes M, Conocchia NE, Stewart CW (2012) Corneal ectasia after myopic laser in situ keratomileusis: a long-term study. Clin Ophthalmol 6:1801–1813. https://doi.org/10.2147/OPTH.S37249

    Article  PubMed  PubMed Central  Google Scholar 

  2. Woodward MA et al (2008) Visual rehabilitation and outcomes for ectasia after corneal refractive surgery. J Cataract Refract Surg 34:383–388. https://doi.org/10.1016/j.jcrs.2007.10.025

    Article  PubMed  PubMed Central  Google Scholar 

  3. Seiler T, Quurke AW (1998) Iatrogenic keratectasia after LASIK in a case of forme fruste keratoconus. J Cataract Refract Surg 24:1007–1009. https://doi.org/10.1016/s0886-3350(98)80057-6

    Article  CAS  PubMed  Google Scholar 

  4. Roszkowska AM, Sommario MS, Urso M, Aragona P (2017) Post photorefractive keratectomy corneal ectasia. Int J Ophthalmol 10:315–317. https://doi.org/10.18240/ijo.2017.02.22

    Article  PubMed  PubMed Central  Google Scholar 

  5. Moshirfar M et al (2017) Ectasia following small-incision lenticule extraction (SMILE): a review of the literature. Clin Ophthalmol 11:1683–1688. https://doi.org/10.2147/OPTH.S147011

    Article  PubMed  PubMed Central  Google Scholar 

  6. Ambrosio R Jr (2019) Post-LASIK ectasia: twenty years of a conundrum. Semin Ophthalmol 34:66–68. https://doi.org/10.1080/08820538.2019.1569075

    Article  PubMed  Google Scholar 

  7. Wolle MA, Randleman JB, Woodward MA (2016) Complications of refractive surgery: ectasia after refractive surgery. Int Ophthalmol Clin 56:127–139. https://doi.org/10.1097/IIO.0000000000000102

    Article  PubMed  Google Scholar 

  8. Randleman JB, Woodward M, Lynn MJ, Stulting RD (2008) Risk assessment for ectasia after corneal refractive surgery. Ophthalmology 115:37–50. https://doi.org/10.1016/j.ophtha.2007.03.073

    Article  PubMed  Google Scholar 

  9. Santhiago MR (2016) Percent tissue altered and corneal ectasia. Curr Opin Ophthalmol 27:311–315. https://doi.org/10.1097/ICU.0000000000000276

    Article  PubMed  Google Scholar 

  10. Giri P, Azar DT (2017) Risk profiles of ectasia after keratorefractive surgery. Curr Opin Ophthalmol 28:337–342. https://doi.org/10.1097/ICU.0000000000000383

    Article  PubMed  PubMed Central  Google Scholar 

  11. Esporcatte LPG et al (2020) Biomechanical diagnostics of the cornea. Eye Vis (Lond). https://doi.org/10.1186/s40662-020-0174-x

    Article  PubMed  Google Scholar 

  12. Ambrosio R Jr et al (2017) Corneal Biomechanics in ectatic diseases: refractive surgery implications. Open Ophthalmol J 11:176–193. https://doi.org/10.2174/1874364101711010176

    Article  PubMed  Google Scholar 

  13. Ambrosio R Jr et al (2016) Ectasia detection by the assessment of corneal biomechanics. Cornea 35:e18-20. https://doi.org/10.1097/ICO.0000000000000875

    Article  PubMed  Google Scholar 

  14. Salomão MQ et al (2020) The role of corneal biomechanics for the evaluation of ectasia patients Int. J Environ Res Public Health. https://doi.org/10.3390/ijerph17062113

    Article  Google Scholar 

  15. Vinciguerra R, Ambrosio R, Wang Y et al (2023) Detection of keratoconus with a new corvis biomechanical index optimized for chinese populations. Am J Ophthalmol 252:182–187. https://doi.org/10.1016/j.ajo.2023.04.002

    Article  PubMed  Google Scholar 

  16. Ambrósio R Jr, Machado AP, Leão E et al (2023) Optimized artificial intelligence for enhanced ectasia detection using scheimpflug-based corneal tomography and biomechanical data. Am J Ophthalmol 251:126–142. https://doi.org/10.1016/j.ajo.2022.12.016

    Article  PubMed  Google Scholar 

  17. Ambrosio R Jr et al (2017) Integration of scheimpflug-based corneal tomography and biomechanical assessments for enhancing ectasia detection. J Refract Surg 33:434–443. https://doi.org/10.3928/1081597X-20170426-02

    Article  PubMed  Google Scholar 

  18. Vinciguerra R et al (2016) Detection of keratoconus with a new biomechanical index. J Refract Surg 32:803–810. https://doi.org/10.3928/1081597X-20160629-01

    Article  PubMed  Google Scholar 

  19. Vinciguerra R, Ambrosio R Jr, Roberts CJ, Azzolini C, Vinciguerra P (2017) Biomechanical characterization of subclinical keratoconus without topographic or tomographic abnormalities. J Refract Surg 33:399–407. https://doi.org/10.3928/1081597X-20170213-01

    Article  PubMed  Google Scholar 

  20. Wang B et al (2016) Comparison of the change in posterior corneal elevation and corneal biomechanical parameters after small incision lenticule extraction and femtosecond laser-assisted LASIK for high myopia correction. Cont Lens Anterior Eye 39:191–196. https://doi.org/10.1016/j.clae.2016.01.007

    Article  PubMed  Google Scholar 

  21. Vinciguerra R et al (2021) Detection of postlaser vision correction ectasia with a new combined biomechanical index. J Cataract Refract Surg 47:1314–1318. https://doi.org/10.1097/j.jcrs.0000000000000629

    Article  PubMed  Google Scholar 

  22. Nagpal R et al (2020) Phototherapeutic keratectomy. Surv Ophthalmol 65:79–108. https://doi.org/10.1016/j.survophthal.2019.07.002

    Article  PubMed  Google Scholar 

  23. Rapuano CJ (1996) Excimer laser phototherapeutic keratectomy. Int Ophthalmol Clin 36:127–136. https://doi.org/10.1097/00004397-199603640-00017

    Article  CAS  PubMed  Google Scholar 

  24. Miyata K, Takahashi T, Tomidokoro A, Ono K, Oshika T (2001) Iatrogenic keratectasia after phototherapeutic keratectomy. Br J Ophthalmol 85:247–248. https://doi.org/10.1136/bjo.85.2.238j

    Article  CAS  PubMed  Google Scholar 

  25. Vinciguerra R et al (2016) Influence of pachymetry and intraocular pressure on dynamic corneal response parameters in healthy patients. J Refract Surg 32:550–561. https://doi.org/10.3928/1081597X-20160524-01

    Article  PubMed  Google Scholar 

  26. Roberts CJ et al (2017) Introduction of two novel stiffness parameters and interpretation of air puff-induced biomechanical deformation parameters with a dynamic scheimpflug analyzer. J Refract Surg 33:266–273. https://doi.org/10.3928/1081597X-20161221-03

    Article  PubMed  Google Scholar 

  27. Dupps WJ Jr, Wilson SE (2006) Biomechanics and wound healing in the cornea. Exp Eye Res 83:709–720. https://doi.org/10.1016/j.exer.2006.03.015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Feizi S, Karjou Z, Abbasi H, Javadi MA, Azari AA (2020) Characterization of In Vivo biomechanical properties in macular corneal dystrophy. Am J Ophthalmol 215:8–13. https://doi.org/10.1016/j.ajo.2020.03.003

    Article  PubMed  Google Scholar 

  29. Marcos-Fernandez MA, Tabernero SS, Herreras JM, Galarreta DJ (2018) Impact of herpetic stromal immune keratitis in corneal biomechanics and innervation. Graefes Arch Clin Exp Ophthalmol 256:155–161. https://doi.org/10.1007/s00417-017-3826-3

    Article  PubMed  Google Scholar 

Download references

Funding

No fundings.

Author information

Authors and Affiliations

Authors

Contributions

R.V. and G.C. wrote the manuscript, A.E, R.A, A.E and B.L revised and improved the manuscript, P.V supervised the all project and revised the initial and final manuscript

Corresponding author

Correspondence to Riccardo Vinciguerra.

Ethics declarations

Conflict of interest

Riccardo Vinciguerra, Paolo Vinciguerra, Renato Ambrósio Jr., and Ahmed Elsheikh are consultants for OCULUS Optikgeräte GmbH. OCULUS Optikgeräte GmbH did not take part in the design, analysis, or interpretation of the results. Except where noted, none of the remaining authors have financial interests to report.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vinciguerra, R., Cancian, G., Ambrósio, R. et al. Assessment of the specificity of corvis biomechanical index-laser vision correction (CBI-LVC) in stable corneas after phototherapeutic keratectomy. Int Ophthalmol 43, 4289–4295 (2023). https://doi.org/10.1007/s10792-023-02840-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10792-023-02840-w

Keywords

Navigation