Skip to main content

Advertisement

Log in

Fundus autofluorescence in uveitis: from pathogenesis to imaging interpretation

  • Review
  • Published:
International Ophthalmology Aims and scope Submit manuscript

Abstract

Purpose

This review aims to summarize the current fundus autofluorescence (FAF) ailment for diagnosis and follow-up of uveitis.

Methods

A thorough literature search was performed in the PubMed database.

Results

FAF maps the retinal pigment epithelium's (RPE) health. Therefore, several posterior infectious and non. This fast, easy-to-perform, noninvasive technique can detect and manage infectious uveitis.

Conclusions

FAF serves to understand pathophysiologic mechanisms of uveitis and is a valuable prognostic indicator of themselves.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Agarwal A, Pichi F, Invernizzi A, Grewal DS, Singh RB, Upadhyay A (2023) Stepwise approach for fundus imaging in the diagnosis and management of posterior uveitis. Surv Ophthalmol 29:S0039

    Google Scholar 

  2. Machemer R, Norton EW, Gass JD, Choromokos E (1970) Pseudofluorescence-a problem in interpretation of fluorescein angiograms. Am J Ophthalmol 70(1):1–10. https://doi.org/10.1016/0002-9394(70)90658-6

    Article  CAS  PubMed  Google Scholar 

  3. Delori FC, Dorey CK, Staurenghi G, Arend O, Goger DG, Weiter JJ (1995) In vivo fluorescence of the ocular fundus exhibits retinal pigment epithelium lipofuscin characteristics. Invest Ophthalmol Vis Sci 36(3):718–729

    CAS  PubMed  Google Scholar 

  4. Pichi F, Abboud EB, Ghazi NG, Khan AO (2018) Fundus autofluorescence imaging in hereditary retinal diseases. Acta Ophthalmol 96(5):e549–e561. https://doi.org/10.1111/aos.13602

    Article  PubMed  Google Scholar 

  5. Durrani K, Foster CS (2012) Fundus autofluorescence imaging in posterior uveitis. Semin Ophthalmol 27(5–6):228–235. https://doi.org/10.3109/08820538.2012.711414

    Article  PubMed  Google Scholar 

  6. Bosch E, Horwitz J, Bok D (1993) Phagocytosis of outer segments by retinal pigment epithelium: phagosome-lysosome interaction. J Histochem Cytochem 41(2):253–263. https://doi.org/10.1177/41.2.8419462

    Article  CAS  PubMed  Google Scholar 

  7. Meleth AD, Sen HN (2012) Use of fundus autofluorescence in the diagnosis and management of uveitis. Int Ophthalmol Clin 52(4):45–54. https://doi.org/10.1097/IIO.0b013e3182662ee9

    Article  PubMed  PubMed Central  Google Scholar 

  8. Marchese A, Agarwal A, Moretti AG, Handa S, Modorati G, Querques G, Bandello F, Gupta V, Miserocchi E (2020) Advances in imaging of uveitis. Ther Adv Ophthalmol 12:2515841420917781. https://doi.org/10.1177/2515841420917781

    Article  PubMed  PubMed Central  Google Scholar 

  9. Bittencourt MG, Hassan M, Halim MS, Afridi R et al (2019) Blue light versus green light fundus autofluorescence in normal subjects and in patients with retinochoroidopathy secondary to retinal and uveitic diseases. J Ophthalmic Inflamm Infect. https://doi.org/10.1186/s12348-018-0167-2

    Article  PubMed  PubMed Central  Google Scholar 

  10. Oishi A, Miyata M, Numa S, Otsuka Y, Oishi M, Tsujikawa A (2019) Wide-field fundus autofluorescence imaging in patients with hereditary retinal degeneration: a literature review. Int J Retina and Vitreous 12:23. https://doi.org/10.1186/s40942-019-0173-z

    Article  Google Scholar 

  11. Sparrow JR, Duncker T, Schuerch K, Paavo M, de Carvalho JRL (2020) Lessons learned from quantitative fundus autofluorescence. Prog Retin Eye Res 74:100774. https://doi.org/10.1016/j.preteyeres.2019.100774

    Article  CAS  PubMed  Google Scholar 

  12. Deitch I, Ferenchak K, Miller JB (2021) Quantitative autofluorescence: review of current technical aspects and applications in chorioretinal disease. Semin Ophthalmol 36(4):346–350. https://doi.org/10.1080/08820538.2021.1908570

    Article  PubMed  Google Scholar 

  13. Chen S, Chang Y, Wu J (2001) The spatial distribution of macular pigment in humans. Curr Eye Res 23(6):422–434. https://doi.org/10.1076/ceyr.23.6.422.6963

    Article  CAS  PubMed  Google Scholar 

  14. Jabs DA, Nussenblatt RB, Rosenbaum JT, Standardization of Uveitis Nomenclature Working Group (2005) Standardization of uveitis nomenclature for reporting clinical data Results of the First International Workshop. Am J Ophthalmol 140(3):509–16. https://doi.org/10.1016/j.ajo.2005.03.057

    Article  PubMed  Google Scholar 

  15. Rao NA, Wu GS (2000) Free radical mediated photoreceptor damage in uveitis. Prog Retin Eye Res 19(1):41–68. https://doi.org/10.1016/s1350-9462(99)00003-8

    Article  CAS  PubMed  Google Scholar 

  16. Forrester JV, Huitinga I, Lumsden L, Dijkstra CD (1998) Marrow-derived activated macrophages are required during the effector phase of experimental autoimmune uveoretinitis in rats. Curr Eye Res 17(4):426–437. https://doi.org/10.1080/02713689808951224

    Article  CAS  PubMed  Google Scholar 

  17. Jiang H, Lumsden L, Forrester JV (1999) Macrophages and dendritic cells in IRBP-induced experimental autoimmune uveoretinitis in B10RIII mice. Invest Ophthalmol Vis Sci 40(13):3177–3185

    CAS  PubMed  Google Scholar 

  18. Ito S, Wu G, Kimoto T, Hisatomi T, Ishibashi T, Rao NA (2004) Peroxynitrite-induced apoptosis in photoreceptor cells. Curr Eye Res 28(1):17–24. https://doi.org/10.1076/ceyr.28.1.17.23488

    Article  CAS  PubMed  Google Scholar 

  19. Rajendram R, Saraswathy S, Rao NA (2007) Photoreceptor mitochondrial oxidative stress in early experimental autoimmune uveoretinitis. Br J Ophthalmol 91(4):531–537. https://doi.org/10.1136/bjo.2006.101576

    Article  PubMed  Google Scholar 

  20. Kawali A, Pichi F, Avadhani K, Invernizzi A, Hashimoto Y, Mahendradas P (2017) Multimodal Imaging of the Normal Eye. Ocul Immunol Inflamm 25(5):721–731. https://doi.org/10.1080/09273948.2017.1375531

    Article  PubMed  Google Scholar 

  21. Pichi F, Srvivastava SK, Chexal S et al (2016) En face optical coherence tomography and optical coherence tomography angiography of multiple evanescent white dot syndrome: new insights into pathogenesis. Retina 36(Suppl 1):S178–S188. https://doi.org/10.1097/IAE.0000000000001255

    Article  PubMed  Google Scholar 

  22. Russell JF, Pichi F, Scott NL et al (2009) Masqueraders of multiple evanescent white dot syndrome (MEWDS). Int Ophthalmol 40(3):627–638. https://doi.org/10.1007/s10792-019-01223-4

    Article  Google Scholar 

  23. Li D, Kishi S (2009) Restored photoreceptor outer segment damage in multiple evanescent white dot syndrome. Ophthalmology 116(4):762–770. https://doi.org/10.1016/j.ophtha.2008.12.060

    Article  PubMed  Google Scholar 

  24. Furino C, Boscia F, Cardascia N et al (2009) Fundus autofluorescence and multiple evanescent white dot syndrome. Retina 29:60–63. https://doi.org/10.1097/IAE.0b013e31818c5e04

    Article  PubMed  Google Scholar 

  25. Gal-Or O, Sorenson JA, Gattoussi S et al (2019) Multiple evanescent white dot syndrome with subretinal deposits. Retin Cases Brief Rep 13:314–319. https://doi.org/10.1097/ICB.0000000000000602

    Article  PubMed  Google Scholar 

  26. Standardization of Uveitis Nomenclature (SUN) Working Group (2021) Classification criteria for acute posterior multifocal placoid pigment epitheliopathy. Am J Ophthalmol 228:174–181. https://doi.org/10.1016/j.ajo.2021.03.056

    Article  Google Scholar 

  27. Klufas MA, Phasukkijwatana N, Iafe NA et al (2017) Optical coherence tomography angiography reveals choriocapillaris flow reduction in placoid chorioretinitis. Ophthalmol Retina 1(1):77–91. https://doi.org/10.1016/j.oret.2016.08.008

    Article  PubMed  Google Scholar 

  28. Souka AAR, Hillenkamp J, Gora F, Gabel V, Framme C (2006) Correlation between optical coherence tomography and autofluorescence in acute posterior multifocal placoid pigment epitheliopathy. Graefe’s Arch Clin Exp Ophthalmol 244(10):1219–1223. https://doi.org/10.1007/s00417-006-0343-1

    Article  Google Scholar 

  29. Lima LH, Greenberg JP, Greenstein VC et al (2012) Hyperautofluorescent ring in autoimmune retinopathy. Retina 32(7):1385–94. https://doi.org/10.1097/IAE.0b013e3182398107

    Article  PubMed  PubMed Central  Google Scholar 

  30. Pepple KL, Cusick M, Jaffe GJ, Mruthyunjaya P (2013) SD-OCT and autofluorescence characteristics of autoimmune retinopathy. Br J Ophthalmol 97(2):139–44. https://doi.org/10.1136/bjophthalmol-2012-302524

    Article  PubMed  Google Scholar 

  31. Canamary AM Jr, Takahashi WY, FerrazSallum JM (2018) Autoimmune retinopathy: a review. Int J Retina Vitreous. https://doi.org/10.1186/s40942-017-0104-9

    Article  PubMed  PubMed Central  Google Scholar 

  32. Neri P, Pichi F (2022) Acute syphilitic posterior placoid chorioretinitis: when the great mimicker cannot pretend any more; new insight of an old acquaintance. J Ophthalmic Inflamm Infect. https://doi.org/10.1186/s12348-022-00286-2

    Article  PubMed  PubMed Central  Google Scholar 

  33. Pichi F, Ciardella AP, Cunningham ET Jr et al (2014) Spectral domain optical coherence tomography findings in patients with acute syphilitic posterior placoid chorioretinopathy. Retina 34(2):373–384. https://doi.org/10.1097/IAE.0b013e3182993f11

    Article  PubMed  Google Scholar 

  34. Pichi F, Dolz-Marco R, Francis JH et al (2022) Advanced OCT analysis of biopsy-proven vitreoretinal lymphoma. Am J Ophthalmol 238:16–26. https://doi.org/10.1016/j.ajo.2021.11.023

    Article  CAS  PubMed  Google Scholar 

  35. Casady M, Faia L, Nazemzadeh M, Nussenblatt R, Chan CC, Sen HN (2014) Fundus autofluorescence patterns in primary intraocular lymphoma. Retina 34(2):366–372. https://doi.org/10.1097/IAE.0b013e31829977fa

    Article  CAS  PubMed  Google Scholar 

  36. Ishida T, Ohno-Matsui K, Kaneko Y et al (2010) Fundus autofluorescence patterns in eyes with primary intraocular lymphoma. Retina 30(1):23–32. https://doi.org/10.1097/IAE.0b013e3181b408a2

    Article  PubMed  Google Scholar 

  37. Shifera AS, Pennesi ME, Yang P, Lin P (2017) Ultra-wide-field fundus autofluorescence findings in patients with acute zonal occult outer retinopathy. Retina 37(6):1104–1119. https://doi.org/10.1097/IAE.0000000000001311

    Article  PubMed  PubMed Central  Google Scholar 

  38. Herbort CP Jr, Arapi I, Papasavvas I, Mantovani A, Jeannin B (2021) Acute Zonal Occult Outer Retinopathy (AZOOR) results from a clinicopathological mechanism different from choriocapillaritis diseases: a multimodal imaging analysis. Diagnostics (Basel) 29(7):1184. https://doi.org/10.3390/diagnostics11071184

    Article  Google Scholar 

  39. Yeh S, Forooghian F, Wong WT et al (2010) Fundus autofluorescence imaging of the white dot syndromes. Arch Ophthalmol 128(1):46–56. https://doi.org/10.1001/archophthalmol.2009.368

    Article  PubMed  PubMed Central  Google Scholar 

  40. Standardization of Uveitis Nomenclature (SUN) Working Group (2021) Classification criteria for multifocal choroiditis with panuveitis. Am J Ophthalmol 228:152–158. https://doi.org/10.1016/j.ajo.2021.03.043

    Article  Google Scholar 

  41. Standardization of Uveitis Nomenclature (SUN) Working Group (2021) Classification criteria for punctate inner choroiditis. Am J Ophthalmol 228:275–280. https://doi.org/10.1016/j.ajo.2021.03.046

    Article  Google Scholar 

  42. Matsumoto Y, Haen SP, Spaide RF (2007) The white dot syndromes. Compr Ophthalmol Update 8(4):179–200

    PubMed  Google Scholar 

  43. Haen SP, Spaide RF (2008) Fundus autofluorescence in multifocal choroiditis and panuveitis. Am J Ophthalmol 145(5):847–853. https://doi.org/10.1016/j.ajo.2008.01.008

    Article  PubMed  Google Scholar 

  44. Shakoor A, Vitale AT (2012) Imaging in the diagnosis and management of multifocal choroiditis and punctate inner choroidopathy. Int Ophthalmol Clin 52(4):243–256. https://doi.org/10.1097/IIO.0b013e318265fb51

    Article  PubMed  Google Scholar 

  45. Turkcuoglu P, Chang PY, Rentiya ZS et al (2011) Mycophenolate mofetil and fundus autofluorescence in the management of recurrent punctate inner choroidopathy. Ocul Immunol Inflamm 19(4):286–292. https://doi.org/10.3109/09273948.2011.580072

    Article  CAS  PubMed  Google Scholar 

  46. Munk MR, Jung JJ, Biggee K et al (2015) Idiopathic multifocal choroiditis/punctate inner choroidopathy with acute photoreceptor loss or dysfunction out of proportion to clinically visible lesions. Retina 35:334–343. https://doi.org/10.1097/IAE.0000000000000370

    Article  PubMed  PubMed Central  Google Scholar 

  47. Standardization of Uveitis Nomenclature (SUN) Working Group (2021) Classification criteria for serpiginous choroiditis. Am J Ophthalmol 228:126–133. https://doi.org/10.1016/j.ajo.2021.03.038

    Article  Google Scholar 

  48. Gupta A, Bansal R, Gupta V et al (2012) Fundus autofluorescence in serpiginouslike choroiditis. Retina 32:814–825. https://doi.org/10.1097/IAE.0b013e3182278c41

    Article  PubMed  Google Scholar 

  49. Jones BE, Jampol LM, Yannuzzi LA, Tittl M, Johnson MW, Han DP, Davis JL, Williams DF (2000) Relentless placoid chorioretinitis: A new entity or an unusual variant of serpiginous chorioretinitis? Arch Ophthalmol 118(7):931–938

    CAS  PubMed  Google Scholar 

  50. Veronese C, Marcheggiani EB, Tassi F, Pichi F, Morara M, Ciardella AP (2014) Early autofluorescence findings of relentless placoid chorioretinitis. Retina 34(3):625–627. https://doi.org/10.1097/IAE.0b013e3182a487d5

    Article  PubMed  Google Scholar 

  51. Bansal R, Kulkarni P, Gupta A, Gupta V, Dogra MR (2011) High-resolution spectral domain optical coherence tomography and fundus autofluorescence correlation in tubercular serpiginouslike choroiditis. J Ophthalmic Inflamm Infect 1(4):157–163. https://doi.org/10.1007/s12348-011-0037-7

    Article  PubMed  PubMed Central  Google Scholar 

  52. Standardization of Uveitis Nomenclature (SUN) Working Group (2021) Classification criteria for toxoplasmic retinitis. Am J Ophthalmol 228:134–141. https://doi.org/10.1016/j.ajo.2021.03.042

    Article  Google Scholar 

  53. Pichi F, Veronese C, Lembo A, Invernizzi A, Mantovani A, Herbort CP, Cunningham ET Jr, Morara M, Ricci F, Neri P (2017) New appraisals of Kyrieleis plaques: a multimodal imaging study. Br J Ophthalmol 101(3):316–321. https://doi.org/10.1136/bjophthalmol-2015-308246

    Article  PubMed  Google Scholar 

  54. Mathis T, Delaunay B, Favard C, Denis P, Kodjikian L (2020) Hyperautofluorescent spots in acute ocular toxoplasmosis: a new indicator of outer retinal inflammation. Retina 40(12):2396–2402. https://doi.org/10.1097/IAE.0000000000002759

    Article  CAS  PubMed  Google Scholar 

  55. Zicarelli F, Pichi F, Parrulli S et al (2022) Acute posterior ocular toxoplasmosis: an optical coherence tomography angiography and dye angiography study. Ocul Immunol Inflamm 30(3):541–545. https://doi.org/10.1080/09273948.2021.1977831

    Article  PubMed  Google Scholar 

  56. Standardization of Uveitis Nomenclature (SUN) Working Group (2021) Classification criteria for birdshot chorioretinitis. Am J Ophthalmol 228:65–71. https://doi.org/10.1016/j.ajo.2021.03.059

    Article  Google Scholar 

  57. Comander J, Loewenstein J, Sobrin L (2011) Diagnostic testing and disease monitoring in birdshot chorioretinopathy. Seminars in Ophthalmol 26(4–5):329–336. https://doi.org/10.3109/08820538.2011.588661

    Article  Google Scholar 

  58. Koizumi H, Pozzoni MC, Spaide RF (2008) Fundus autofluorescence in birdshot chorioretinopathy. Ophthalmology 115(5):e15-20. https://doi.org/10.1016/j.ophtha.2008.01.025

    Article  PubMed  Google Scholar 

  59. Giuliari G, Hinkle DM, Foster CS (2009) The spectrum of fundus autofluorescence findings in birdshot chorioretinopathy. J Ophthalmol 2009:567693. https://doi.org/10.1155/2009/567693

    Article  PubMed  Google Scholar 

  60. Seidensticker F, Neubauer AS, Wasfy T et al (2011) Wide-field fundus autofluorescence corresponds to visual fields in chorioretinitis patients. Clin Ophthalmol 5:1667–1671. https://doi.org/10.2147/OPTH.S26224

    Article  PubMed  PubMed Central  Google Scholar 

  61. Tomkins-Netzer O, Taylor SRJ, Lightman S (2014) Long-term clinical and anatomic outcome of birdshot chorioretinopathy. JAMA Ophthalmol 132(1):57–62. https://doi.org/10.1001/jamaophthalmol.2013.6235

    Article  PubMed  Google Scholar 

  62. Gass JD, Gieser RG, Wilkinson CP, Beahm DE, Pautler SE (1990) Bilateral diffuse uveal melanocytic proliferation in patients with occult carcinoma. Arch Ophthalmol 108(4):527–533. https://doi.org/10.1001/archopht.1990.01070060075053

    Article  CAS  PubMed  Google Scholar 

  63. Shiraki A, Winegarner A, Hashida N, Nishi O, Nishi Y, Maruyama K, Nishida K (2018) Diagnostic evaluation of optical coherence tomography angiography and fundus autofluorescence in bilateral diffuse uveal melanocytic proliferation. Am J Ophthalmol Case Rep 11:32–34. https://doi.org/10.1016/j.ajoc.2018.04.014

    Article  PubMed  PubMed Central  Google Scholar 

  64. Naysan J, Pang CE, Klein RW, Freund KB (2016) Multimodal imaging of bilateral diffuse uveal melanocytic proliferation associated with an iris mass lesion. Int J Retina Vitreous 16(2):13. https://doi.org/10.1186/s40942-016-0038-7

    Article  Google Scholar 

Download references

Acknowledgements

Not applicable

Funding

The authors declare that no funds, grants, or other support were received during the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection, and analysis were performed by Maria Carmela Saturno, Piergiorgio Neri, and Francesco Pichi. The first draft of the manuscript was written by Maria Carmela Saturno, and all the authors commented on previous versions of the manuscript. All the authors read and approved the final manuscript.

Corresponding author

Correspondence to Maria Carmela Saturno.

Ethics declarations

Conflict of interest

The authors have no relevant financial or non-financial interests to disclose.

Ethics approval

No ethical approval is required.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saturno, M.C., Neri, P. & Pichi, F. Fundus autofluorescence in uveitis: from pathogenesis to imaging interpretation. Int Ophthalmol 43, 4359–4371 (2023). https://doi.org/10.1007/s10792-023-02803-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10792-023-02803-1

Keywords

Navigation