Skip to main content

Advertisement

Log in

Development of interface haze after femtosecond laser-assisted in situ keratomileusis with accelerated corneal crosslinking: a case series

  • Case Report
  • Published:
International Ophthalmology Aims and scope Submit manuscript

Abstract

Background

Femtosecond laser-assisted in situ keratomileusis (FS-LASIK) with accelerated corneal crosslinking (FS-LASIK Xtra) is a recent procedure to achieve safer corneal ablation in myopic patients with borderline corneal thickness. Despite its well-accepted effectiveness, the development of remarkable interface haze is a potential concern but has rarely been reported and discussed.

Methods

We report for the first time a case series of 11 eyes of 7 patients who developed typical interface haze 1–3 months after FS-LASIK Xtra for the correction of myopia with astigmatism, with intensity grades ranging from 0.5 + to 3 + at the time of onset.

Results

The preclinical spherical diopters of the 7 patients ranged from − 2.25 D to − 9.25 D and cylindrical diopters ranged from − 0.25 D to − 2.50 D. The haze tended to be self-limiting, and topical anti-inflammatory therapy was given to moderate and severe cases, who responded well to treatment.

Conclusions

The development of clinically significant interface haze is a relatively rare complication after FS-LASIK Xtra but tends to have a higher incidence and intensity compared to conventional stromal surgery such as FS-LASIK. Timely treatment and close follow-up are essential to patients undertaking FS-LASIK Xtra.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Tomita M (2016) Combined laser in-situ keratomileusis and accelerated corneal cross-linking: an update. Curr Opin Ophthalmol 27(4):304–310. https://doi.org/10.1097/ICU.0000000000000281

    Article  PubMed  Google Scholar 

  2. Xu W, Tao Y, Wang L et al (2017) Evaluation of biomechanical changes in myopia patients with unsatisfactory corneas after femto second-laser in situ keratomileusis (FS-LASIK) concurrent with accelerated corneal collagen cross-linking using corvis-ST: two-year follow-up results. Med Sci Monit 23:3649–3656. https://doi.org/10.12659/MSM.905493

    Article  PubMed  PubMed Central  Google Scholar 

  3. Zhao L, Yin Y, Hu T et al (2023) Comprehensive management of post-LASIK ectasia: from prevention to treatment. Acta Ophthalmol. https://doi.org/10.1111/aos.15636

    Article  PubMed  Google Scholar 

  4. Dong R, Zhang Y, Yuan Y et al (2022) A prospective randomized self-controlled study of LASIK combined with accelerated cross-linking for high myopia in Chinese: 24-month follow-up. BMC Ophthalmol 22(1):280. https://doi.org/10.1186/s12886-022-02491-y

    Article  PubMed  PubMed Central  Google Scholar 

  5. Tan J, Lytle GE, Marshall J (2015) Consecutive laser in situ keratomileusis and accelerated corneal crosslinking in highly myopic patients: preliminary results. Eur J Ophthalmol 25(2):101–107. https://doi.org/10.5301/ejo.5000543

    Article  Google Scholar 

  6. Zhang J, Chen T, Wang J et al (2022) Laser in Situ Keratomileusis (LASIK) combined with prophylactic corneal cross-linking for correction of myopia: regional analysis of corneal morphology. Ophthalmol Ther 11(4):1423–1439. https://doi.org/10.1007/s40123-022-00510-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Tamayo GE (2012) Predictable visual outcomes with accelerated corneal cross-linking concurrent with laser in situ keratomileusis. J Cataract Refract Surg 38(12):2206. https://doi.org/10.1016/j.jcrs.2012.10.023

    Article  PubMed  Google Scholar 

  8. Lu NJ, Hafezi F, Torres-Netto EA et al (2023) Effect of fluence levels on prophylactic corneal cross-linking for laser in situ keratomileusis and transepithelial photorefractive keratectomy. Acta Ophthalmol 101(2):e185–e196. https://doi.org/10.1111/aos.15230

    Article  CAS  PubMed  Google Scholar 

  9. Lim L, Lim EWL, Rosman M et al (2020) Three-year outcomes of simultaneous accelerated corneal crosslinking and femto-lasik for the treatment of high myopia in asian eyes. Clin Ophthalmol 14:2865–2872. https://doi.org/10.2147/OPTH.S260088

    Article  PubMed  PubMed Central  Google Scholar 

  10. Fantes FE, Hanna KD, Waring Iii GO et al (1990) Wound healing after excimer laser keratomileusis (photorefractive keratectomy) in monkeys. Arch Ophthalmol 108(5):665–675

    Article  CAS  PubMed  Google Scholar 

  11. Charpentier S, Keilani C, Maréchal M et al (2021) Corneal haze post photorefractive keratectomy. J Fr Ophtalmol 44(9):1425–1438. https://doi.org/10.1016/j.jfo.2021.05.006

    Article  CAS  PubMed  Google Scholar 

  12. Torricelli AA, Santhanam A, Wu J et al (2016) The corneal fibrosis response to epithelial-stromal injury. Exp Eye Res 142:110–118. https://doi.org/10.1016/j.exer.2014.09.012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Wilson SE, Torricelli AAM, Marino GK (2020) Corneal epithelial basement membrane: structure, function and regeneration. Exp Eye Res 194:108002. https://doi.org/10.1016/j.exer.2020.108002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Hafezi F, Hillen M, Kollros L et al (2022) Corneal cross-linking in thin corneas: from origins to state of the art. Eur Ophthalmic Rev 16(1):13–16. https://doi.org/10.17925/USOR.2022.16.1.13

    Article  Google Scholar 

  15. Greenstein SA, Hersh PS (2021) Corneal crosslinking for progressive keratoconus and corneal ectasia: summary of US multicenter and subgroup clinical trials. Transl Vis Sci Technol 10(5):13. https://doi.org/10.1167/tvst.10.5.13

    Article  PubMed  PubMed Central  Google Scholar 

  16. Salomão MQ, Chaurasia SS, Sinha-Roy A et al (2011) Corneal wound healing after ultraviolet-A/riboflavin collagen cross-linking: a rabbit study. J Refract Surg 27(6):401–407. https://doi.org/10.3928/1081597x-20101201-02

    Article  PubMed  Google Scholar 

  17. Lim EWL, Lim L (2019) Review of laser vision correction (LASIK, PRK and SMILE) with simultaneous accelerated corneal crosslinking–long-term results. Curr Eye Res 44(11):1171–1180. https://doi.org/10.1080/02713683.2019.1656749

    Article  PubMed  Google Scholar 

  18. Marino GK, Santhiago MR, Torricelli AAM et al (2016) Corneal molecular and cellular biology for the refractive surgeon: the critical role of the epithelial basement membrane. J Refract Surg 32(2):118–125. https://doi.org/10.3928/1081597X-20160105-02

    Article  PubMed  PubMed Central  Google Scholar 

  19. Kymionis GD, Karavitaki AE, Portaliou DM et al (2010) Interface haze formation after ultra thin flap laser in situ keratomileusis. Ophthalmic Surg Lasers Imaging. https://doi.org/10.3928/15428877-20100215-66

    Article  PubMed  Google Scholar 

  20. Esquenazi S, He J, Li N et al (2010) Immunofluorescence of rabbit corneas after collagen cross-linking treatment with riboflavin and ultraviolet A. Cornea 29(4):412–417. https://doi.org/10.1097/ICO.0b013e3181bdf1cc

    Article  PubMed  PubMed Central  Google Scholar 

  21. Covre J, Cristovam P, Loureiro R et al (2013) Evaluation of the riboflavin and ultraviolet light effect on keratocytes cultivated in vitro. Investig Ophthalmol Vis Sci 54(15):1021

    Google Scholar 

  22. Margo JA, Munir WM (2016) Corneal haze following refractive surgery: A review of pathophysiology, incidence, prevention, and treatment. Int Ophthalmol Clin 56(2):111–125. https://doi.org/10.1097/IIO.0000000000000112

    Article  PubMed  Google Scholar 

  23. Furukawa H, Nakayasu K, Gotoh T et al (1997) Effect of topical tranilast and corticosteroids on subepithelial haze after photorefractive keratectomy in rabbits. J Refract Surg 13(5):S457–S458

    Article  CAS  PubMed  Google Scholar 

  24. Pakbin M, Khabazkhoob M, Pakravan M et al (2020) Duration of topical steroid application after photorefractive keratectomy with mitomycin C. J Cataract Refract Surg 46(4):622–632. https://doi.org/10.1097/j.jcrs.0000000000000060

    Article  PubMed  Google Scholar 

  25. Gartry DS, Muir MGK, Lohmann CP et al (1992) The effect of topical corticosteroids on refractive outcome and corneal haze after photorefractive keratectomy: a prospective, randomized, double-blind trial. Arch Ophthalmol 110(7):944–952

    Article  CAS  PubMed  Google Scholar 

  26. Aras C, Özdamar A, Aktunç R et al (1998) The effects of topical steroids on refractive outcome and corneal haze ,thickness, and curvature after photorefractive keratectomy with a 6.0-mm ablation diameter. Ophthalmic Surg Lasers 29(8):621–627

    Article  CAS  PubMed  Google Scholar 

  27. Soya K, Obata H, Amano S et al (1997) Effects of topical corticosteroids on subepithelial haze after excimer laser corneal surgery objective and quantitative method for evaluating haze. J Jpn Ophthalmol Soc 101(2):152–157

    CAS  Google Scholar 

  28. Zhang X, Shen Z, Sun H et al (2023) Efficacy and safety of loteprednol etabonate versus fluorometholone in the treatment of patients after corneal refractive surgery: a meta-analysis. Int Ophthalmol. https://doi.org/10.1007/s10792-023-02646-w

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work was supported by the Science & Technology Department of Sichuan Province (China) funding project (No. 2021YFS0221, No.2023YFS0179), 1.3.5 project for disciplines of excellence, West China Hospital, Sichuan University (No.2022HXFH032, ZYJC21058, 2021-023, 2022-014), and the Postdoctoral Research Funding of West China Hospital (No. 2020HXBH044).

Author information

Authors and Affiliations

Authors

Contributions

All authors conducted clinical observation and the literature search. LW wrote the manuscript. HY the surgery and provided supervision. HY and KM revised the manuscript

Corresponding author

Correspondence to Ke Ma.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Human rights statement

The studies involving human participants were reviewed and approved by the Ethics Committee of West China Hospital.

Informed consent

The patients whose case reports are given in this manuscript provided their written informed consent for publication.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yin, H., Wang, L., Gong, R. et al. Development of interface haze after femtosecond laser-assisted in situ keratomileusis with accelerated corneal crosslinking: a case series. Int Ophthalmol 43, 4333–4342 (2023). https://doi.org/10.1007/s10792-023-02800-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10792-023-02800-4

Keywords

Navigation