Skip to main content

Advertisement

Log in

Comparison in conjunctival-Tenon’s capsule thickness, anterior scleral thickness and ciliary muscle dimensions between Caucasians and Hispanic by optical coherence tomography

  • Original Paper
  • Published:
International Ophthalmology Aims and scope Submit manuscript

Abstract

Purpose

To investigate the differences in the dimensions of the anterior ocular segment, and specifically in conjunctival-Tenon’s capsule thickness (CTT), anterior scleral thickness (AST) and ciliary muscle thickness (CMT), between Caucasian and Hispanic subjects using swept-source optical coherence tomography (SS-OCT).

Methods

Cross-sectional study including 53 Hispanic and 60 Caucasian healthy participants, matched by age, sex and refractive error, who underwent a complete ophthalmological examination. CTT, AST and CMT were manually measured in the temporal and nasal quadrants at 0, 1, 2 and 3 mm from the scleral spur using SS-OCT.

Results

Mean age and refractive error were 38.7 ± 12.3 years and −1.05 ± 2.6 diopters, and 41.8 ± 11.7 years and −0.50 ± 2.6 diopters for the Hispanic and Caucasians, respectively (p = 0.165 and p = 0.244). The CTT was increased in the temporal quadrant in the Hispanic group in the three studied regions (CTT1, CTT2 and CTT3; being the means 223.0 ± 68.4, 215.3 ± 66.4 and 203.8 ± 67.1 µm versus 190.8 ± 51.0, 189.4 ± 53.2 and 187.4 ± 55.3 µm respectively; p < 0.001). Larger AST values were observed in the temporal quadrant in the Hispanic group (AST2: 559.8 ± 80.8 µm and AST3: 591.6 ± 83.0 µm) compared to the Caucasian group (520.7 ± 50.1 and 558.9 ± 54.7 respectively; p ≤ 0.022). No differences were observed in the nasal quadrant for CTT, AST1 and AST3 (p ≥ 0.076). No differences emerged in the CM dimensions (p ≥ 0.055).

Conclusion

CTT and AST measurements were thicker in the temporal quadrant of Hispanic patients compared to Caucasians. This could have implications for the pathogenesis of different ocular diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Ang M, Baskaran M, Werkmeister RM et al (2018) Anterior segment optical coherence tomography. Prog Retin Eye Res 66:132–156. https://doi.org/10.1016/j.preteyeres.2018.04.002

    Article  PubMed  Google Scholar 

  2. Read SA, Alonso-Caneiro D, Vincent SJ et al (2016) Anterior eye tissue morphology: scleral and conjunctival thickness in children and young adults. Sci Rep 6:1–10. https://doi.org/10.1038/srep33796

    Article  CAS  Google Scholar 

  3. Buckhurst HD, Gilmartin B, Cubbidge RP, Logan NS (2015) Measurement of scleral thickness in humans using anterior segment optical coherent tomography. PLoS ONE 10:1–10. https://doi.org/10.1371/journal.pone.0132902

    Article  CAS  Google Scholar 

  4. Sheppard AL, Davies LN (2011) The effect of ageing on in vivo human ciliary muscle morphology and contractility. Invest Ophthalmol Vis Sci 52:1809–1816. https://doi.org/10.1167/iovs.10-6447

    Article  PubMed  Google Scholar 

  5. Kara N, Yuksel K, Bozkurt E et al (2014) Comparison of conjunctival graft thickness after primary and recurrent pterygium surgery: Anterior segment optical coherence tomography study. Indian J Ophthalmol 62:675. https://doi.org/10.4103/0301-4738.129765

    Article  PubMed  PubMed Central  Google Scholar 

  6. Fernández-Vigo JI, Shi H, Kudsieh B et al (2020) Ciliary muscle dimensions by swept-source optical coherence tomography and correlation study in a large population. Acta Ophthalmol 98:e487–e494. https://doi.org/10.1111/aos.14304

    Article  PubMed  Google Scholar 

  7. Fernández-Vigo JI, Shi H, Burgos-Blasco B et al (2022) Anterior scleral thickness dimensions by swept-source optical coherence tomography. Clin Exp Optom 105:13–19. https://doi.org/10.1080/08164622.2021.1924629

    Article  PubMed  Google Scholar 

  8. Domínguez-Vicent A, Monsálvez-Romín D, Esteve-Taboada JJ et al (2019) Effect of age in the ciliary muscle during accommodation: sectorial analysis. J Optometry 12:14–21. https://doi.org/10.1016/j.optom.2018.01.001

    Article  Google Scholar 

  9. Axmann S, Ebneter A, Zinkernagel MS (2016) Imaging of the sclera in patients with scleritis and episcleritis using anterior segment optical coherence tomography. Ocul Immunol Inflamm 24:29–34. https://doi.org/10.3109/09273948.2015.1025983

    Article  PubMed  Google Scholar 

  10. Nanji AA, Sayyad FE, Galor A et al (2015) High-resolution optical coherence tomography as an adjunctive tool in the diagnosis of corneal and conjunctival pathology. Ocul Surf 13:226–235. https://doi.org/10.1016/j.jtos.2015.02.001

    Article  PubMed  PubMed Central  Google Scholar 

  11. Kieval JZ, Karp CL, Abou Shousha M et al (2012) Ultra-high resolution optical coherence tomography for differentiation of ocular surface squamous neoplasia and pterygia. Ophthalmology 119:481–486. https://doi.org/10.1016/j.ophtha.2011.08.028

    Article  PubMed  Google Scholar 

  12. Kudsieh B, Fernández-Vigo JI, Canut Jordana MI et al (2022) Updates on the utility of anterior segment optical coherence tomography in the assessment of filtration blebs after glaucoma surgery. Acta Ophthalmol 100:e29–e37. https://doi.org/10.1111/aos.14881

    Article  PubMed  Google Scholar 

  13. Dhakal R, Vupparaboina KK, Verkicharla PK (2020) Anterior sclera undergoes thinning with increasing degree of myopia. Invest Ophthalmol Vis Sci 61:6. https://doi.org/10.1167/iovs.61.4.6

    Article  PubMed  PubMed Central  Google Scholar 

  14. Fernández-Vigo JI, Shi H, Almorín-Fernández-Vigo I et al (2021) Dimensions of the limbus-ciliary sulcus region by OCT and correlation study in a large population. J Cataract Refract Surg 47:1573–1580. https://doi.org/10.1097/j.jcrs.0000000000000832

    Article  PubMed  Google Scholar 

  15. Sugiura T, Kaji Y, Tanaka Y (2018) Anatomy of the ciliary sulcus and the optimum site of needle passage for intraocular lens suture fixation in the living eye. J Cataract Refract Surg 44:1247–1253. https://doi.org/10.1016/j.jcrs.2018.07.017

    Article  PubMed  Google Scholar 

  16. Schwartz S, Reinhertz N, Neudorfer M et al (2021) Multiple intravitreal injections do not cause anterior scleral thinning: an ultrasound biomicroscopy study. Retina (Philadelphia, Pa) 41:768–773. https://doi.org/10.1097/IAE.0000000000002951

    Article  PubMed  Google Scholar 

  17. Girkin CA, Belghith A, Bowd C et al (2021) Racial differences in the rate of change in anterior lamina cribrosa surface depth in the african descent and glaucoma evaluation study. Invest Ophthalmol Vis Sci 62:12. https://doi.org/10.1167/iovs.62.4.12

    Article  PubMed  PubMed Central  Google Scholar 

  18. Lee RY, Huang G, Porco TC et al (2013) Differences in iris thickness among African Americans, Caucasian Americans, Hispanic Americans, Chinese Americans, and Filipino-Americans. J Glaucoma 22:673–678. https://doi.org/10.1097/IJG.0b013e318264ba68

    Article  PubMed  Google Scholar 

  19. Lee RY, Huang G, Cui QN et al (2012) Association of lens vault with narrow angles among different ethnic groups. Curr Eye Res 37:486–491. https://doi.org/10.3109/02713683.2012.669006

    Article  PubMed  Google Scholar 

  20. Ang M, Li X, Wong W et al (2012) Prevalence of and racial differences in pterygium: a multiethnic population study in Asians. Ophthalmology 119:1509–1515. https://doi.org/10.1016/j.ophtha.2012.02.009

    Article  PubMed  Google Scholar 

  21. Wang YE, Li Y, Wang D et al (2013) Comparison of factors associated with occludable angle between American Caucasians and ethnic Chinese. Invest Ophthalmol Vis Sci 54:7717–7723. https://doi.org/10.1167/iovs.13-12850

    Article  PubMed  PubMed Central  Google Scholar 

  22. Muir KW, Duncan L, Enyedi LB, Freedman SF (2006) Central corneal thickness in children: racial differences (black vs. white) and correlation with measured intraocular pressure. J Glaucoma 15:520–523. https://doi.org/10.1097/01.ijg.0000212284.78045.45

    Article  PubMed  Google Scholar 

  23. Ebneter A, Häner NU, Zinkernagel MS (2015) Metrics of the normal anterior sclera: imaging with optical coherence tomography. Graefe’s Arch Clin Exp Ophthalmol 253:1575–1580. https://doi.org/10.1007/s00417-015-3072-5

    Article  Google Scholar 

  24. Fernández-Vigo JI, Shi H, Burgos-Blasco B et al (2021) Impact of age, sex and refractive error on conjunctival and Tenon’s capsule thickness dimensions by swept-source optical coherence tomography in a large population. Int Ophthalmol 41:3687–3698. https://doi.org/10.1007/s10792-021-01928-5

    Article  PubMed  Google Scholar 

  25. Fernández-Vigo JI, Moreno-Morillo FJ, Shi H et al (2021) Assessment of the anterior scleral thickness in central serous chorioretinopathy patients by optical coherence tomography. Jpn J Ophthalmol 65:769–776. https://doi.org/10.1007/s10384-021-00870-4

    Article  PubMed  Google Scholar 

  26. Bailey MD (2011) How should we measure the ciliary muscle? Invest Ophthalmol Vis Sci 52:1817–1818. https://doi.org/10.1167/iovs.11-7313

    Article  PubMed  Google Scholar 

  27. Laughton DS, Coldrick BJ, Sheppard AL, Davies LN (2015) A program to analyse optical coherence tomography images of the ciliary muscle. Cont Lens Anterior Eye 38:402–408. https://doi.org/10.1016/j.clae.2015.05.007

    Article  PubMed  Google Scholar 

  28. Sheppard AL, Davies LN (2010) In vivo analysis of ciliary muscle morphologic changes with accommodation and axial ametropia. Invest Ophthalmol Vis Sci 51:6882–6889. https://doi.org/10.1167/iovs.10-5787

    Article  PubMed  Google Scholar 

  29. West S, Muñoz B (2009) Prevalence of pterygium in Latinos: Proyecto VER. Br J Ophthalmol 93:1287–1290. https://doi.org/10.1136/bjo.2008.152694

    Article  CAS  PubMed  Google Scholar 

  30. Kandavel R, Kang JJ, Memarzadeh F, Chuck RS (2010) Comparison of pterygium recurrence rates in Hispanic and white patients after primary excision and conjunctival autograft. Cornea 29:141–145. https://doi.org/10.1097/ICO.0b013e3181b11630

    Article  PubMed  Google Scholar 

  31. Campagna G, Adams M, Wang L et al (2018) Comparison of pterygium recurrence rates among different races and ethnicities after primary pterygium excision by surgeons in training. Cornea 37:199–204. https://doi.org/10.1097/ICO.0000000000001453

    Article  PubMed  Google Scholar 

  32. Ciftci S, Dogan E, Dag U, Ciftci L (2017) Removal of Tenon fortified by conjunctival-limbal autograft in treatment of pterygium. Int Ophthalmol 37:813–818. https://doi.org/10.1007/s10792-016-0341-1

    Article  PubMed  Google Scholar 

  33. Bausili Portabella MM, Nadal J, Alvarez de Toledo J et al (2020) Long-term outcome of scleral-sutured posterior chamber intraocular lens: a case series. Br J Ophthalmol 104:712–717. https://doi.org/10.1136/bjophthalmol-2019-314054

    Article  PubMed  Google Scholar 

  34. Samsudin A, Eames I, Brocchini S, Khaw PT (2016) The influence of scleral flap thickness, shape, and sutures on intraocular pressure (IOP) and aqueous humor flow direction in a trabeculectomy model. J Glaucoma 25:e704–e712. https://doi.org/10.1097/IJG.0000000000000360

    Article  PubMed  PubMed Central  Google Scholar 

  35. Shiratori N, Nakamoto K, Nishio Y et al (2022) Statistical analysis of factors affecting surgically induced astigmatism following trabeculectomy. Clin Ophthalmol (Auckland, NZ) 16:3833–3839. https://doi.org/10.2147/OPTH.S389480

    Article  Google Scholar 

  36. Tamimi EA, Pyne JD, Muli DK et al (2017) Racioethnic differences in human posterior scleral and optic nerve stump deformation. Invest Ophthalmol Vis Sci 58:4235–4246. https://doi.org/10.1167/iovs.17-22141

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Cevher S, Şahin T (2020) Does anisometropia affect the ciliary muscle thickness? An ultrasound biomicroscopy study. Int Ophthalmol 40:3393–3402. https://doi.org/10.1007/s10792-020-01625-9

    Article  PubMed  Google Scholar 

  38. Shi J, Zhao J, Zhao F et al (2020) Ciliary muscle morphology and accommodative lag in hyperopic anisometropic children. Int Ophthalmol 40:917–924. https://doi.org/10.1007/s10792-019-01264-9

    Article  PubMed  Google Scholar 

  39. Fernández-Vigo JI, Fernández-Vigo JÁ, Macarro-Merino A et al (2016) Determinants of anterior chamber depth in a large Caucasian population and agreement between intra-ocular lens Master and Pentacam measurements of this variable. Acta Ophthalmol 94:e150–e155. https://doi.org/10.1111/aos.12824

    Article  PubMed  Google Scholar 

Download references

Funding

The authors declare that no funds, grants, or other support were received during the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection and analysis were performed by JIFV, SFA, BBB, FLY and LDPGL. IAFV, 4 JMMC, 2 JÁFV. The first draft of the manuscript was written by JIFV, SFA and BBB, and all the remaining authors (FLY and LDPGL, IAFV, JMMC and JÁFV) commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to José Ignacio Fernández-Vigo.

Ethics declarations

Conflict of interest

The authors have no relevant financial or non-financial interests to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fernández-Vigo, J.I., Fernández-Aragón, S., Burgos-Blasco, B. et al. Comparison in conjunctival-Tenon’s capsule thickness, anterior scleral thickness and ciliary muscle dimensions between Caucasians and Hispanic by optical coherence tomography. Int Ophthalmol 43, 3969–3977 (2023). https://doi.org/10.1007/s10792-023-02798-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10792-023-02798-9

Keywords

Navigation