Skip to main content

Advertisement

Log in

Measuring the agreement of keratometry readings of four devices in eyes with keratoconus

  • Original Paper
  • Published:
International Ophthalmology Aims and scope Submit manuscript

Abstract

Purpose

To determine the keratometry measurement agreement using Sirius corneal topography and Scheimpflug camera, Tomey corneal topography, Topcon autokeratorefractometer, and Tomey OA-2000 optical biometry in eyes with different severity of keratoconus.

Methods

In this retrospective study 115 eyes in different stages of keratoconus were divided into 2 groups of mild (stage 1), and moderate to severe keratoconus (stages 2, 3), according to the Amsler-Krumeich classification. Keratometry measurements were obtained using Sirius corneal topography and Scheimpflug camera (phoenix V3.7.01.08), Tomey corneal topography (Tms SW22C-200S-200), Topcon autokeratorefractometer (KR8900), and Tomey optical biometry (OA-2000 Opt-Meas V.4E).

Results

In group 1 All devices demonstrated fair agreement in average keratometry values (95% LoA range > 1 D). However, it was poorer for group 2 (95% LOA range > 3 D). In group 1 Bonferroni test revealed statistically significant difference in average K readings among (Topcon autokeratorefractometer 8900 and Tomey OA-2000 biometry, p < 0.01), and between (Tomey topography and Topcon autokeratorefractometer, p < 0.05). Also in group 2 significant difference was observed in the average keratometry of the most instruments (p < 0.01) except for the (Tomey topography and Topcon autokeratorefractometer) and (Tomey topography and Tomey OA-2000 biometry.

Conclusions

According to our investigation in mild, moderate and severe keratoconus the agreement in K reading between Topcon autokeratorefractometer, OA-2000 optical biometry, Sirius topography and Tomey topography was poor. The agreement declines especially in the steep meridian and it was not acceptable clinically. These devices should not be applied interchangeably.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Santodomingo-Rubido J, Carracedo G, Suzaki A, Villa-Collar C, Vincent SJ, Wolffsohn JS (2022) Keratoconus: an updated review. Cont Lens Anter Eye 45(3):101559. https://doi.org/10.1016/j.clae.2021.101559

    Article  Google Scholar 

  2. Ghiasian L, Abolfathzadeh N, Manafi N, Hadavandkhani A (2019) Intraocular lens power calculation in keratoconus: a review of literature. J Curr Ophthalmol 31(2):127–134. https://doi.org/10.1016/j.joco.2019.01.011

    Article  PubMed  PubMed Central  Google Scholar 

  3. Ernst BJ, Hsu HY (2011) Keratoconus association with axial myopia: a prospective biometric study. Eye Contact Lens 37(1):2–5. https://doi.org/10.1097/ICL.0b013e3181fb2119

    Article  PubMed  Google Scholar 

  4. Watson MP, Anand S, Bhogal M et al (2014) Cataract surgery outcome in eyes with keratoconus. Br J Ophthalmol 98(3):361–364. https://doi.org/10.1136/bjophthalmol-2013-303829

    Article  PubMed  Google Scholar 

  5. Bozorg S, Pineda R (2014) Cataract and keratoconus: minimizing complications in intraocular lens calculations. Semin Ophthalmol 29(5–6):376–379. https://doi.org/10.3109/08820538.2014.959193

    Article  PubMed  Google Scholar 

  6. Park DY, Lim DH, Chung TY, Chung ES (2013) Intraocular lens power calculations in a patient with posterior keratoconus. Cornea 32(5):708–711. https://doi.org/10.1097/ICO.0b013e3182797900

    Article  PubMed  Google Scholar 

  7. Andreanos KD, Hashemi K, Petrelli M, Droutsas K, Georgalas I, Kymionis GD (2017) Keratoconus treatment algorithm. Ophthalmol Ther 6(2):245–262. https://doi.org/10.1007/s40123-017-0099-1

    Article  PubMed  PubMed Central  Google Scholar 

  8. Savini G, Barboni P, Carbonelli M, Hoffer KJ (2011) Repeatability of automatic measurements by a new Scheimpflug camera combined with Placido topography. J Cataract Refract Surg 37(10):1809–1816. https://doi.org/10.1016/j.jcrs.2011.04.033

    Article  PubMed  Google Scholar 

  9. Milla M, Piñero DP, Amparo F, Alió JL (2011) Pachymetric measurements with a new Scheimpflug photography-based system: intraobserver repeatability and agreement with optical coherence tomography pachymetry. J Cataract Refract Surg 37(2):310–316. https://doi.org/10.1016/j.jcrs.2010.08.038

    Article  PubMed  Google Scholar 

  10. Sahu J (2022) Corneal topography: sirius. J Delhi Ophthalmol Soc 32(2):119–124

    Google Scholar 

  11. Doctor K, Vunnava KP, Shroff R et al (2020) Simplifying and understanding various topographic indices for keratoconus using Scheimpflug based topographers. Indian J Ophthalmol 68(12):2732–2743. https://doi.org/10.4103/ijo.IJO_2111_20

    Article  PubMed  PubMed Central  Google Scholar 

  12. Wang Q, Savini G, Hoffer KJ et al (2012) A comprehensive assessment of the precision and agreement of anterior corneal power measurements obtained using 8 different devices. PLoS One 7(9):e45607. https://doi.org/10.1371/journal.pone.0045607

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Goebels S, Pattmöller M, Eppig T, Cayless A, Seitz B, Langenbucher A (2015) Comparison of 3 biometry devices in cataract patients. J Cataract Refract Surg 41(11):2387–2393. https://doi.org/10.1016/j.jcrs.2015.05.028

    Article  PubMed  Google Scholar 

  14. Liao X, Peng Y, Liu B, Tan QQ, Lan CJ (2020) Agreement of ocular biometric measurements in young healthy eyes between IOLMaster 700 and OA-2000. Sci Rep 10(1):3134. https://doi.org/10.1038/s41598-020-59919-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Ghaffari R, Mahmoudzadeh R, Mohammadi SS, Salabati M, Latifi G, Ghassemi H (2019) Assessing the validity of measurements of swept-source and partial coherence interferometry devices in cataract patients. Optom Vis Sci 96(10):745–750. https://doi.org/10.1097/OPX.0000000000001433

    Article  PubMed  Google Scholar 

  16. Altınel MG, Uslu H (2021) Agreement of keratometric readings measured using rotating Scheimpflug imaging, auto-refractokeratometer, and biograph in eyes with keratoconus. Int Ophthalmol 41(5):1659–1669. https://doi.org/10.1007/s10792-021-01720-5

    Article  PubMed  Google Scholar 

  17. Siddiqui AA, Devgan U (2017) Intraocular lens calculations in atypical eyes. Indian J Ophthalmol 65(12):1289–1293. https://doi.org/10.4103/ijo.IJO_834_17

    Article  PubMed  PubMed Central  Google Scholar 

  18. Moshirfar M, Walker BD, Birdsong OC (2018) Cataract surgery in eyes with keratoconus: a review of the current literature. Curr Opin Ophthalmol 29(1):75–80. https://doi.org/10.1097/ICU.0000000000000440

    Article  PubMed  Google Scholar 

  19. Hashemi H, Yekta A, Khabazkhoob M (2015) Effect of keratoconus grades on repeatability of keratometry readings: comparison of 5 devices. J Cataract Refract Surg 41(5):1065–1072. https://doi.org/10.1016/j.jcrs.2014.08.043

    Article  PubMed  Google Scholar 

  20. Zvornicanin J, Cabric E, Jusufovic V, Musanovic Z, Zvornicanin E (2014) Use of the toric intraocular lens for keratoconus treatment. Acta Inform Med 22(2):139–141. https://doi.org/10.5455/aim.2014.22.139-141

    Article  PubMed  PubMed Central  Google Scholar 

  21. Thebpatiphat N, Hammersmith KM, Rapuano CJ, Ayres BD, Cohen EJ (2007) Cataract surgery in keratoconus. Eye Contact Lens 33(5):244–246. https://doi.org/10.1097/ICL.0b013e318030c96d

    Article  PubMed  Google Scholar 

  22. Bland JM, Altman DG (1986) Statistical methods for assessing agreement between two methods of clinical measurement. Lancet 1(8476):307–310

    Article  CAS  PubMed  Google Scholar 

  23. Buckhurst PJ, Wolffsohn JS, Shah S, Naroo SA, Davies LN, Berrow EJ (2009) A new optical low coherence reflectometry device for ocular biometry in cataract patients. Br J Ophthalmol 93(7):949–953. https://doi.org/10.1136/bjo.2008.156554

    Article  CAS  PubMed  Google Scholar 

  24. Módis L Jr, Szalai E, Kolozsvári B, Németh G, Vajas A, Berta A (2012) Keratometry evaluations with the Pentacam high resolution in comparison with the automated keratometry and conventional corneal topography. Cornea 31(1):36–41. https://doi.org/10.1097/ICO.0b013e318204c666

    Article  PubMed  Google Scholar 

  25. Hashemi H, Heydarian S, Ali Yekta A et al (2019) Agreement between Pentacam and handheld Auto-Refractor/Keratometer for keratometry measurement. J Optom 12(4):232–239. https://doi.org/10.1016/j.optom.2019.06.001

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Funding

The authors have not disclosed any funding.

Author information

Authors and Affiliations

Authors

Contributions

SA and ZKR conceived of the presented idea. SA and MHA developed the theory and performed the computations. SA, ZKR and MHN verified the analytical methods. TN encouraged SA to investigate [correlation between parameters] and supervised the findings of this work. All authors discussed the results and contributed to the final manuscript.

Corresponding author

Correspondence to Zahra Kamary Rad.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abdi, S., Hosseini Abardeh, M., Naseri, M.H. et al. Measuring the agreement of keratometry readings of four devices in eyes with keratoconus. Int Ophthalmol 43, 2897–2915 (2023). https://doi.org/10.1007/s10792-023-02693-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10792-023-02693-3

Keywords

Navigation