Skip to main content

Advertisement

Log in

Evaluation of the corneal biomechanical properties and corneal thickness in patients with Graves’ orbitopathy

  • Original Paper
  • Published:
International Ophthalmology Aims and scope Submit manuscript

Abstract

Purpose

To evaluate the corneal biomechanical properties and central corneal thickness in patients with Graves’ orbitopathy (GO).

Method

A total of 132 eyes of 66 patients with GO and 108 eyes of 54 healthy subjects were enrolled. Eyes with GO were classified as high score clinical activity score (CAS, ≥ 3) (Group 1, n = 64) and low CAS score (< 3) (Group 2, n = 68). Corneal biomechanical parameters [corneal hysteresis (CH), corneal resistance factor (CRF)], Goldmann-correlated intraocular pressure (IOPg), and corneal-compensated IOP (IOPcc) levels were measured with Ocular Response Analyzer (ORA, Reichert Ophthalmic Instruments, Buffalo, NY) and compared between the groups.

Results

The mean CH values were found as 9.6 ± 1 mmHg in Group 1, 10.2 ± 0.9 mmHg in Group 2, and 11.4 ± 1.7 mmHg in the Control Group (p < 0.001). In post hoc analysis the mean CH was significantly lower in Group 1 than Group 2 and Control Group (Group 1-Group 2, p < 0.001; Group 1-Control Group, p < 0.001). The mean CRF was found as 10.5 ± 2.1 in Group 1, 10.4 ± 2.2 in Group 2, and 10.43 ± 2.0 in the Control group. There was no statistically significant difference between the groups in CRF measurements (p = 0.959). The mean IOPcc values were found as 17.1 ± 3.6 mmHg in Group 1, 15.8 ± 4.0 mmHg in Group 2 and 15.2 ± 4.1 mmHg in the Control Group. The IOPcc and IOPg measurements between all groups were statistically significant (p = 0.009, p = 0.027, respectively).

Conclusions

Corneal biomechanical measurements were different in the GO patients with varying CAS scores compared to healthy individuals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Mishra S, Maurya VK, Kumar S et al (2020) Clinical management and therapeutic strategies for the thyroid-associated ophthalmopathy: current and future perspectives. Curr Eye Res 45:1325–1341

    Article  CAS  PubMed  Google Scholar 

  2. Bartalena L, Piantanida E, Gallo D et al (2020) Epidemiology, natural history, risk factors, and prevention of Graves’ orbitopathy. Front Endocrinol (Lausanne) 11:615993

    Article  PubMed  Google Scholar 

  3. Smith TJ (2018) New advances in understanding thyroid-associated ophthalmopathy and the potential role for insulin-like growth factor-I receptor. F1000Res 7:134

    Article  PubMed  PubMed Central  Google Scholar 

  4. The definition and classification of dry eye disease: report of the definition and classification subcommittee of the international dry eye workshop (2007) Ocul Surf 5:75–92

  5. Villani E, Viola F, Sala R et al (2010) Corneal involvement in Graves’ orbitopathy: an in vivo confocal study. Invest Ophthalmol Vis Sci 51:4574–4578

    Article  PubMed  Google Scholar 

  6. El Annan J, Chauhan SK, Ecoiffier T et al (2009) Characterization of effector T cells in dry eye disease. Invest Ophthalmol Vis Sci 50:3802–3807

    Article  PubMed  Google Scholar 

  7. Ozkan SB, Soylev MF, Vahapoglu H et al (1997) Evaluation of conjunctival morphology in thyroid associated eye disease by use of impression cytology. Acta Ophthalmol Scand 75:145–147

    Article  CAS  PubMed  Google Scholar 

  8. Villani E, Galimberti D, Viola F et al (2007) The cornea in Sjogren’s syndrome: an in vivo confocal study. Invest Ophthalmol Vis Sci 48:2017–2022

    Article  PubMed  Google Scholar 

  9. Tuominen IS, Konttinen YT, Vesaluoma MH et al (2003) Corneal innervation and morphology in primary Sjogren’s syndrome. Invest Ophthalmol Vis Sci 44:2545–2549

    Article  PubMed  Google Scholar 

  10. Villani E, Galimberti D, Viola F et al (2008) Corneal involvement in rheumatoid arthritis: an in vivo confocal study. Invest Ophthalmol Vis Sci 49:560–564

    Article  PubMed  Google Scholar 

  11. Luce DA (2005) Determining in vivo biomechanical properties of the cornea with an ocular response analyzer. J Cataract Refract Surg 31:156–162

    Article  PubMed  Google Scholar 

  12. Glass DH, Roberts CJ, Litsky AS, Weber PA (2008) A viscoelastic biomechanical model of the cornea describing the effect of viscosity and elasticity on hysteresis. Invest Ophthalmol Vis Sci 49:3919–3926

    Article  PubMed  Google Scholar 

  13. Karabulut GO, Kaynak P, Altan C et al (2014) Corneal biomechanical properties in thyroid eye disease. Kaohsiung J Med Sci 30:299–304

    Article  PubMed  Google Scholar 

  14. Moghimi S, Safizadeh M, Mazloumi M et al (2016) Evaluation of corneal biomechanical properties in patients with thyroid eye disease using ocular response analyzer. J Glaucoma 25:269–273

    Article  PubMed  Google Scholar 

  15. Razeghinejad MR, Farsiani AR, Salout R et al (2020) Corneal biomechanical properties in hyperthyroidism and thyroid eye disease. Saudi J Ophthalmol 34:251–255

    PubMed  Google Scholar 

  16. Yuksel N, Kars ME (2017) Evaluation of corneal biomechanical properties in patients with thyroid eye disease using an ocular response analyzer. J Glaucoma 26:e121

    Article  PubMed  Google Scholar 

  17. Pandey N, Kaur Chhabra A (2021) Evaluation of corneal biomechanical properties on ocular response analyzer and their correlation with the clinical profile of the patients with thyroid-associated ophthalmopathy. Orbit 40:193–198

    Article  PubMed  Google Scholar 

  18. Bartalena L, Kahaly GJ, Baldeschi L et al (2021) The 2021 European Group on Graves’ orbitopathy (EUGOGO) clinical practice guidelines for the medical management of Graves’ orbitopathy. Eur J Endocrinol 185:G43–G67

    Article  CAS  PubMed  Google Scholar 

  19. Mourits MP, Prummel MF, Wiersinga WM, Koornneef L (1997) Clinical activity score as a guide in the management of patients with Graves’ ophthalmopathy. Clin Endocrinol (Oxf) 47:9–14

    Article  CAS  PubMed  Google Scholar 

  20. Vantomme M, Pourjavan S, Detry-Morel M (2013) The range of the waveform score of the ocular response analyzer (ORA) in healthy subjects. Bull Soc Belge Ophtalmol 322:91–97

    Google Scholar 

  21. Huang D, Xu N, Song Y et al (2012) Inflammatory cytokine profiles in the tears of thyroid-associated ophthalmopathy. Graefes Arch Clin Exp Ophthalmol 250:619–625

    Article  CAS  PubMed  Google Scholar 

  22. Huang D, Luo Q, Yang H, Mao Y (2014) Changes of lacrimal gland and tear inflammatory cytokines in thyroid-associated ophthalmopathy. Invest Ophthalmol Vis Sci 55:4935–4943

    Article  CAS  PubMed  Google Scholar 

  23. Broman AT, Congdon NG, Bandeen-Roche K, Quigley HA (2007) Influence of corneal structure, corneal responsiveness, and other ocular parameters on tonometric measurement of intraocular pressure. J Glaucoma 16:581–588

    Article  PubMed  Google Scholar 

  24. Leszczynska A, Moehler K, Spoerl E et al (2018) Measurement of orbital biomechanical properties in patients with thyroid orbitopathy using the dynamic scheimpflug analyzer (Corvis ST). Curr Eye Res 43:289–292

    Article  PubMed  Google Scholar 

  25. Pniakowska Z, Klysik A, Gos R, Jurowski P (2016) Corneal biomechanical changes and intraocular pressure in patients with thyroid orbitopathy. Int J Ophthalmol 9:439–443

    PubMed  PubMed Central  Google Scholar 

  26. Vellara HR, Hart R, Gokul A et al (2017) In vivo ocular biomechanical compliance in thyroid eye disease. Br J Ophthalmol 101:1076–1079

    Article  PubMed  Google Scholar 

  27. Brandt JD (2004) Corneal thickness in glaucoma screening, diagnosis, and management. Curr Opin Ophthalmol 15:85–89. https://doi.org/10.1097/00055735-200404000-00004

    Article  PubMed  Google Scholar 

  28. Goldich Y, Barkana Y, Gerber Y et al (2009) Effect of diabetes mellitus on biomechanical parameters of the cornea. J Cataract Refract Surg 35:715–719

    Article  PubMed  Google Scholar 

  29. Medeiros FA, Meira-Freitas D, Lisboa R et al (2013) Corneal hysteresis as a risk factor for glaucoma progression: a prospective longitudinal study. Ophthalmology 120:1533–1540

    Article  PubMed  Google Scholar 

  30. Mangouritsas G, Morphis G, Mourtzoukos S, Feretis E (2009) Association between corneal hysteresis and central corneal thickness in glaucomatous and non-glaucomatous eyes. Acta Ophthalmol 87:901–905

    Article  PubMed  Google Scholar 

  31. Wells AP, Garway-Heath DF, Poostchi A et al (2008) Corneal hysteresis but not corneal thickness correlates with optic nerve surface compliance in glaucoma patients. Invest Ophthalmol Vis Sci 49:3262–3268

    Article  PubMed  Google Scholar 

  32. Manni G, Oddone F, Parisi V et al (2008) Intraocular pressure and central corneal thickness. Prog Brain Res 173:25–30

    Article  PubMed  Google Scholar 

  33. Conrad AH, Zhang Y, Walker AR et al (2006) Thyroxine affects expression of KSPG-related genes, the carbonic anhydrase II gene, and KS sulfation in the embryonic chicken cornea. Invest Ophthalmol Vis Sci 47:120–132

    Article  PubMed  Google Scholar 

  34. Coulombre AJ, Coulombre JL (1964) Corneal development. 3. the role of the thyroid in dehydration and the development of transparency. Exp Eye Res 3:105–114

    Article  CAS  PubMed  Google Scholar 

  35. Gatzioufas Z, Panos GD, Brugnolli E, Hafezi F (2014) Corneal topographical and biomechanical variations associated with hypothyroidism. J Refract Surg 30:78–79

    Article  PubMed  Google Scholar 

  36. Konuk O, Aktas Z, Aksoy S et al (2008) Hyperthyroidism and severity of orbital disease do not change the central corneal thickness in Graves’ ophthalmopathy. Eur J Ophthalmol 18:125–127

    Article  CAS  PubMed  Google Scholar 

  37. Konuk O, Onaran Z, Ozhan Oktar S et al (2009) Intraocular pressure and superior ophthalmic vein blood flow velocity in Graves’ orbitopathy: relation with the clinical features. Graefes Arch Clin Exp Ophthalmol 247:1555–1559

    Article  PubMed  Google Scholar 

  38. Cockerham KP, Pal C, Jani B et al (1997) The prevalence and implications of ocular hypertension and glaucoma in thyroid-associated orbitopathy. Ophthalmology 104:914–917

    Article  CAS  PubMed  Google Scholar 

  39. da Silva FL, de Lourdes Veronese Rodrigues M, Akaishi PM, Cruz AA (2009) Graves’ orbitopathy: frequency of ocular hypertension and glaucoma. Eye (Lond) 23:957–959

    Article  PubMed  Google Scholar 

  40. Eslami F, Borzouei S, Khanlarzadeh E, Seif S (2019) Prevalence of increased intraocular pressure in patients with Graves’ ophthalmopathy and association with ophthalmic signs and symptoms in the north-west of Iran. Clin Ophthalmol 13:1353–1359

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Funding

The authors have not disclosed any funding.

Author information

Authors and Affiliations

Authors

Contributions

Conception and design were contributed by FA, MSB, GA, MK, AY. Data collection, evaluation and analyses, preparation, review, and approval of the manuscript were contributed by all authors.

Corresponding author

Correspondence to Ferdane Ataş.

Ethics declarations

Conflict of interest

The authors report no conflicts of interest. The authors alone are responsible for the content and writing of the paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ataş, F., Arikan, G., Söylev Bajin, M. et al. Evaluation of the corneal biomechanical properties and corneal thickness in patients with Graves’ orbitopathy. Int Ophthalmol 43, 2257–2263 (2023). https://doi.org/10.1007/s10792-022-02621-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10792-022-02621-x

Keywords

Navigation