Skip to main content

Advertisement

Log in

A comprehensive update on the use of optical coherence tomography angiography in glaucoma

  • Review
  • Published:
International Ophthalmology Aims and scope Submit manuscript

Abstract

Purpose

The primary purpose of this review is to provide a comprehensive summary on the technical principles of OCTA and to enumerate vascular parameters being explicated for glaucoma diagnosis and progression with emphasis on recent studies. In addition, the authors also summarize the future clinical potentials of OCTA in glaucoma and enumerate the limitations of this imaging modality in the present-day scenario.

Methods

The index study is a narrative review on OCTA in glaucoma. The authors searched the PubMed database using the key phrases ‘‘optical coherence tomography angiography” AND “glaucoma,’’ AND/OR “vascular parameters” AND/OR “ocular perfusion.” Being a relatively recent development in ocular imaging, studies in which OCTA imaging had been used for glaucoma evaluation since 2012 were included until March 2022. The literature search included original studies and previous review articles, while case reports were excluded. Preliminary search was based on relevant articles with search keywords in the title and abstract. The second screening was performed by reading the full text of the literature.

Results

Recent studies indicate reduction in microcirculation in glaucomatous eyes compared to the normal subjects. The area of interest for glaucoma evaluation using OCTA varies among the different studies. Based on the literature reviewed here, (1) OCTA parameters measured in the peripapillary; ONH and macular area have been shown to differentiate between glaucoma and normal eyes with a discriminatory power comparable to OCT parameters used routinely in clinics, (2) monitoring of peripapillary and macular vessel density may provide important information to the evaluation of glaucoma progression and prediction of rates of disease worsening, (3) studies suggest strong correlation between the OCTA parameters, the OCT parameters and visual function, measured by visual field testing, in glaucomatous eyes, (4) future prospects of OCTA in glaucoma evaluations using AI predicting structural and functional features and prognosis based on early vascular findings would open up scope for early detection of high-risk suspects and fast progressors in glaucoma.

Conclusion

OCTA can be useful in quantifying vascular parameters in the optic disc, peripapillary and the macular regions for glaucoma evaluation. OCTA shows potential to become a part of everyday glaucoma management.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Tham YC, Li X, Wong TY, Quigley HA, Aung T, Cheng CY (2014) Global prevalence of glaucoma and projections of glaucoma burden through 2040: a systematic review and meta-analysis. Ophthalmology 121(11):2081–2090

    Article  PubMed  Google Scholar 

  2. Flammer J, Autoregulation MM (2008) A balancing act between supply and demand. Can J Ophthalmol 43:317–321

    Article  PubMed  Google Scholar 

  3. Lee EJ, Lee KM, Lee SH, Kim T-W (2016) OCT angiography of the peripapillary retina in primary open-angle glaucoma. Invest Ophthalmol Vis Sci 57:6265–6270

    Article  PubMed  Google Scholar 

  4. Holló G (2018) Optical coherence tomography angiography in glaucoma. Turk J Ophthalmol 48(4):196–201

    Article  PubMed  PubMed Central  Google Scholar 

  5. Matsunaga DR, Yi JJ, De Koo LO, Ameri H, Puliafito CA, Kashani AH (2015) Optical coherence tomography angiography of diabetic retinopathy in human subjects. Ophthalmic Surg Lasers Imaging Retina 46(8):796–805

    Article  PubMed  Google Scholar 

  6. Pechauer AD, Huang D, Jia Y (2015) Detecting blood flow response to stimulation of the human eye. Biomed Res Int 2015:121973

    Article  PubMed  PubMed Central  Google Scholar 

  7. Tamaki Y, Araie M, Kawamoto E, Eguchi S, Fujii H (1994) Noncontact, two-dimensional measurement of retinal microcirculation using laser speckle phenomenon. Invest Ophthalmol Vis Sci 35(11):3825–3834

    CAS  PubMed  Google Scholar 

  8. Rege A, Cunningham SI, Liu Y et al (2018) Noninvasive assessment of retinal blood flow using a novel handheld laser speckle contrast imager. Transl Vis Sci Technol 7(6):7

    Article  PubMed  PubMed Central  Google Scholar 

  9. Hagag AM, Gao SS, Jia Y, Huang D (2017) Optical coherence tomography angiography, technical principles, and clinical applications in ophthalmology. Taiwan J Ophthalmol 7(3):115–129

    Article  PubMed  PubMed Central  Google Scholar 

  10. Chan KKW, Tang F, Tham CCY, Young AL, Cheung CY (2017) Retinal vasculature in glaucoma: a review. BMJ Open Ophthalmol 1(1):e000032. Erratum in: BMJ Open Ophthalmol. 2018 Jul 7;3(1)

  11. Hayreh SS (2001) The blood supply of the optic nerve head and the evaluation of myth and reality. Prog Retin Eye Res 20:563–593

    Article  CAS  PubMed  Google Scholar 

  12. Mackenzie PJ, Cioffi GA (2008) Vascular anatomy of the optic nerve head. Can J Ophthalmol 43:308–312

    Article  PubMed  Google Scholar 

  13. Masoud AF, Ritch R (2020) Optical coherence tomography angiography in glaucoma. Ann Transl Med 8(18):1204

    Article  Google Scholar 

  14. Mansoori T, Sivaswamy J, Gamalapati JS et al (2017) Measurement of radial peripapillary capillary density in the normal human retina using optical coherence tomography angiography. J Glaucoma 26:241–246

    Article  PubMed  Google Scholar 

  15. Spaide RF, Klancnik JM Jr, Cooney MJ (2015) Retinal vascular layers imaged by fluorescein angiography and optical coherence tomography angiography. JAMA Ophthalmol 133:45–50

    Article  PubMed  Google Scholar 

  16. Paques M, Tadayoni R, Sercombe R et al (2003) Structural and hemodynamic analysis of the mouse retinal microcirculation. Invest Ophthalmol Vis Sci 44:4960–4967

    Article  PubMed  Google Scholar 

  17. Bojikian KD, Chen PP, Wen JC (2019) Optical coherence tomography angiography in glaucoma. Curr Opin Ophthalmol 30(2):110–116

    Article  PubMed  Google Scholar 

  18. Makita S, Hong Y, Yamanari M, Yatagai T, Yasuno Y (2006) Optical coherence angiography. Opt Express 14(17):7821–7840. https://doi.org/10.1364/oe.14.007821

    Article  PubMed  Google Scholar 

  19. Jia Y, Tan O, Tokayer J, Potsaid B, Wang Y, Liu JJ et al (2012) Split-spectrum amplitude-decorrelation angiography with optical coherence tomography. Opt Express 20(4):4710–4725

    Article  PubMed  PubMed Central  Google Scholar 

  20. Li XX, Wu W, Zhou H, Deng JJ, Zhao MY, Qian TW, Yan C, Xu X, Yu SQ (2018) A quantitative comparison of five optical coherence tomography angiography systems in clinical performance. Int J Ophthalmol 11(11):1784–1795

    PubMed  PubMed Central  Google Scholar 

  21. Cai Y, Alio Del Barrio JL, Wilkins MR, Ang M (2017) Serial optical coherence tomography angiography for corneal vascularization. Graefes Arch Clin Exp Ophthalmol 255:135–139

    Article  PubMed  Google Scholar 

  22. Stanga PE, Tsamis E, Papayannis A, Stringa F, Cole T, Jalil A (2016) Swept-source optical coherence tomography Angio (Topcon Corp, Japan): technology review. Dev Ophthalmol 56:13–17

    Article  PubMed  Google Scholar 

  23. Devarajan K, Di Lee W, Ong HS, Lwin NC, Chua J, Schmetterer L, Mehta JS, Ang M 2019 Vessel density and en-face segmentation of optical coherence tomography angiography to analyze corneal vascularisation in an animal model. Eye Vis (Lond) 6:2. Erratum in: Eye Vis (Lond). 2019 Feb 14;6:7

  24. Rosenfeld PJ, Durbin MK, Roisman L, Zheng F, Miller A, Robbins G et al (2016) ZEISS angioplex spectral domain optical coherence tomography angiography: technical aspects. Dev Ophthalmol 56:18–29

    Article  PubMed  Google Scholar 

  25. Huang Y, Zhang Q, Wang RK (2015) Efficient method to suppress artifacts caused by tissue hyper-reflections in optical microangiography of retina in vivo. Biomed Opt Express 6(4):1195–1208

    Article  PubMed  PubMed Central  Google Scholar 

  26. Coscas G, Lupidi M, Coscas F (2016) Heidelberg spectralis optical coherence tomography angiography: technical aspects. Dev Ophthalmol 56:1–5

    Article  PubMed  Google Scholar 

  27. Turgut B (2016) Optical coherence tomography angiography—a general view. Eur Ophthalmic Rev 10(1):39–42

    Article  Google Scholar 

  28. Li XX, Wu W, Zhou H et al (2018) A quantitative comparison of five optical coherence tomography angiography systems in clinical performance. Int J Ophthalmol 11(11):1784–1795

    PubMed  PubMed Central  Google Scholar 

  29. Van Melkebeke L, Barbosa-Breda J, Huygens M, Stalmans I (2018) Optical coherence tomography angiography in glaucoma: a review. Ophthalmic Res 60:139–151

    Article  PubMed  Google Scholar 

  30. Yao X, Alam MN, Le D, Toslak D (2020) Quantitative optical coherence tomography angiography: a review. Exp Biol Med 245(4):301–312

    Article  CAS  Google Scholar 

  31. Jia Y, Tan O, Tokayer J et al (2012) Split-spectrum amplitude-decorrelation angiography with optical coherence tomography. Opt Express 20:4710–4725

    Article  PubMed  PubMed Central  Google Scholar 

  32. Chalam KV, Sambhav K (2016) Optical coherence tomography angiography in retinal diseases. J Ophthalmic Vis Res 11(1):84–92

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Jia Y, Wei E, Wang X, Zhang X, Morrison JC, Parikh M et al (2014) Optical coherence tomography angiography of optic disc perfusion in glaucoma. Ophthalmology 121:1322–1332

    Article  PubMed  Google Scholar 

  34. Liu L, Jia Y, Takusagawa HL et al (2015) Optical coherence tomography angiography of the peripapillary retina in glaucoma. JAMA Ophthalmol 133:1045–1052

    Article  PubMed  PubMed Central  Google Scholar 

  35. Kumar RS, Anegondi N, Chandapura RS et al (2016) Discriminant function of optical coherence tomography angiography to determine disease severity in glaucoma. Invest Ophthalmol Vis Sci 57(14):6079–6088

    Article  PubMed  Google Scholar 

  36. Akagi T, Nakanishi H, Tereda N et al (2016) Microvascular density in glaucomatous eyes with hemifield visual field defects: an optical coherence tomography angiography study. Am J Ophthalmol 168:237–249

    Article  PubMed  Google Scholar 

  37. Lévêque PM, Zéboulon P, Brasnu E, Baudouin C, Labbé A (2016) Optic disc vascularization in glaucoma: value of spectral-domain optical coherence tomography angiography. J Ophthalmol 2016:6956717

    Article  PubMed  PubMed Central  Google Scholar 

  38. Wang X, Jiang C, Ko T et al (2015) Correlation between optic disc perfusion and glaucomatous severity in patients with open-angle glaucoma: an optical coherence tomography angiography study. Graefes Arch Clin Exp Ophthalmol 253:1557–1564

    Article  PubMed  Google Scholar 

  39. Yarmohammadi A, Zangwill LM, Diniz-Filho A et al (2016) Optical coherence tomography angiography vessel density in healthy, glaucoma suspect, and glaucoma eyes. Invest Ophthalmol Vis Sci 57:451–459

    Article  Google Scholar 

  40. Suh MH, Zangwill LM, Manalastas PIC et al (2016) Optical coherence tomography angiography vessel density in glaucomatous eyes with focal lamina cribrosa defects. Ophthalmology 123:2309–2317

    Article  PubMed  Google Scholar 

  41. Rao HL, Kadambi SV, Weinreb RN et al (2016) Diagnostic ability of peripapillary vessel density measurements of optical coherence tomography angiography in primary open-angle and angle-closure glaucoma. Br J Ophthalmol 101(8):1066–1070

    Article  PubMed  Google Scholar 

  42. Rao HL, Srinivasan T, Pradhan ZS et al (2021) Optical coherence tomography angiography and visual field progression in primary angle closure glaucoma. J Glaucoma 30(3):e61–e67

    Article  PubMed  PubMed Central  Google Scholar 

  43. Scripsema NK, Garcia PM, Bavier RD et al (2016) Optical coherence tomography angiography analysis of perfused peripapillary capillaries in primary open-angle glaucoma and normal tension glaucoma. Invest Ophthalmol Vis Sci 57:611–620

    Article  Google Scholar 

  44. Wang RK, Jacques SL, Ma Z, Hurst S, Hanson SR, Gruber A (2007) Three dimensional optical angiography. Opt Express 15(7):4083–4097

    Article  PubMed  Google Scholar 

  45. Chu Z, Lin J, Gao C, Xin C, Zhang Q, Chen CL, Roisman L, Gregori G, Rosenfeld PJ, Wang RK (2016) Quantitative assessment of the retinal microvasculature using optical coherence tomography angiography. J Biomed Opt 21(6):66008

    Article  PubMed  Google Scholar 

  46. Chen CL, Bojikian KD, Gupta D et al (2016) ONH perfusion in normal eyes and eyes with glaucoma using optical coherence tomography-based microangiography. Quant Imaging Med Surg 6:125–133

    Article  PubMed  PubMed Central  Google Scholar 

  47. LeTran VH, Burkemper B, O’Fee JR et al (2022) Wedge defects on optical coherence tomography angiography of the peripapillary retina in glaucoma: prevalence and associated clinical factors. J Glaucoma 31(4):242–249

    Article  PubMed  Google Scholar 

  48. Suwan Y, Fard MA, Geyman LS et al (2018) Association of myopia with peripapillary perfused capillary density in patients with glaucoma: an optical coherence tomography angiography study. JAMA Ophthalmol 136:507–513

    Article  PubMed  PubMed Central  Google Scholar 

  49. Akagi T, Iida Y, Nakanishi H et al (2016) Microvascular density in glaucomatous eyes with hemifield visual field defects: an optical coherence tomography angiography study. Am J Ophthalmol 168:237–249

    Article  PubMed  Google Scholar 

  50. Lee K, Maeng KJ, Kim JY et al (2020) Diagnostic ability of vessel density measured by spectral-domain optical coherence tomography angiography for glaucoma in patients with high myopia. Sci Rep 10:3027

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Shin JW, Kwon J, Lee J et al (2019) Relationship between vessel density and visual field sensitivity in glaucomatous eyes with high myopia. Br J Ophthalmol 103:585–591

    Article  Google Scholar 

  52. Rao HL, Pradhan ZS, Weinreb RN et al (2017) Determinants of peripapillary and macular vessel densities measured by optical coherence tomography angiography in normal eyes. J Glaucoma 26:491–497

    Article  PubMed  Google Scholar 

  53. Holló G (2018) Comparison of peripapillary OCT angiography vessel density and retinal nerve fiber layer thickness measurements for their ability to detect progression in glaucoma. J Glaucoma 27:302–305

    Article  PubMed  Google Scholar 

  54. Holló G (2018) Influence of removing the large retinal vessels-related effect on peripapillary vessel density progression analysis in glaucoma. J Glaucoma 27:e137–e139

    Article  PubMed  Google Scholar 

  55. Muller VC, Storp JJ, Kerschke L et al (2019) Diurnal variations in flow density measured using optical coherence tomography angiography and the impact of heart rate, mean arterial pressure and intraocular pressure on flow density in primary open-angle glaucoma patients. Acta Ophthalmol 97(6):e844–e849

    Article  PubMed  Google Scholar 

  56. Chen HS, Liu CH, Wu WC et al (2017) Optical coherence tomography angiography of the superficial microvasculature in the macular and peripapillary areas in glaucomatous and healthy eyes. Invest Ophthalmol Vis Sci 58:3637–3645

    Article  PubMed  Google Scholar 

  57. Yarmohammadi A, Zangwill LM, Manalastas PIC et al (2018) Peripapillary and macular vessel density in patients with primary open-angle glaucoma and unilateral visual field loss. Ophthalmology 125:578–587

    Article  PubMed  Google Scholar 

  58. Penteado RC, Zangwill LM, Daga FB et al (2018) Optical coherence tomography angiography macular vascular density measurements and the central 10–2 visual field in glaucoma. J Glaucoma 27:481–489

    Article  PubMed  PubMed Central  Google Scholar 

  59. Rao HL, Riyazuddin M, Dasari S, Puttaiah NK, Pradhan ZS, Weinreb RN, Mansouri K, Webers CAB (2018) Relationship of macular thickness and function to optical microangiography measurements in glaucoma. J Glaucoma 27(3):210–218

    Article  PubMed  Google Scholar 

  60. Takusagawa HL, Liu L, Ma KN, Jia Y, Gao SS, Zhang M et al (2017) Projection-resolved optical coherence tomography angiography of macular retinal circulation in glaucoma. Ophthalmology 124:1589–1599

    Article  PubMed  Google Scholar 

  61. Richter GM, Chang R, Situ B, Chu Z, Burkemper B, Reznik A, Bedrood S, Kashani AH, Varma R, Wang RK (2018) Diagnostic performance of macular versus peripapillary vessel parameters by optical coherence tomography angiography for glaucoma. Transl Vis Sci Technol 7(6):21

    Article  PubMed  PubMed Central  Google Scholar 

  62. Moghimi S, Zangwill LM, Penteado RC (2018) Macular and ONH vessel density and progressive retinal nerve fiber layer loss in glaucoma. Ophthalmology 125(11):1720–1728

    Article  PubMed  Google Scholar 

  63. Park HL, Kim JW, Park CK (2018) Choroidal microvasculature dropout is associated with progressive retinal nerve fiber layer thinning in glaucoma with disc hemorrhage. Ophthalmology 125(7):1003–1013

    Article  PubMed  Google Scholar 

  64. Hou H, Moghimi S, Proudfoot JA, Ghahari E, Penteado RC, Bowd C, Yang D, Weinreb RN (2020) Ganglion cell complex thickness and macular vessel density loss in primary open-angle glaucoma. Ophthalmology 127(8):1043–1052

    Article  PubMed  Google Scholar 

  65. Lee EJ, Lee SH, Kim JA, Kim TW (2017) Parapapillary deep-layer microvasculature dropout in glaucoma: topographic association with glaucomatous damage. Invest Ophthalmol Vis Sci 58:3004–3010

    Article  CAS  PubMed  Google Scholar 

  66. Shin JW, Kwon J, Lee J, Kook MS (2018) Choroidal microvasculature dropout is not associated with myopia, but is associated with glaucoma. J Glaucoma 27:189–196

    Article  PubMed  Google Scholar 

  67. Shin JW, Lee J, Kwon J et al (2017) Regional vascular density-visual field sensitivity relationship in glaucoma according to disease severity. Br J Ophthalmol 101:1666–1672

    Article  PubMed  Google Scholar 

  68. Yarmohammadi A, Zangwill LM, Diniz-Filho A et al (2016) Relationship between optical coherence tomography angiography vessel density and severity of visual field loss in glaucoma. Ophthalmology 123(12):2498–2508

    Article  PubMed  Google Scholar 

  69. De Danilo AJ et al (2020) OCTA multilayer and multisector peripapillary microvascular modeling for diagnosing and staging of glaucoma. Transl Vis Sci Technol 9(2):58

    Article  Google Scholar 

  70. Wang YM, Shen R, Lin TPH, Chan PP, Wong MOM, Chan NCY, Tang F, Lam AKN, Leung DYL, Tham CCY, Cheung CY (2022) Optical coherence tomography angiography metrics predict normal tension glaucoma progression. Acta Ophthalmol. https://doi.org/10.1111/aos.15117

    Article  PubMed  PubMed Central  Google Scholar 

  71. Gopinath K, Sivaswamy J, Mansoori T (2016) Automatic glaucoma assessment from angio-OCT images. Proc Int Symp Biomed Imaging 2016:193–196

    Google Scholar 

  72. Lee CS, Tyring AJ, Wu Y, Xiao S, Rokem AS, DeRuyter NP, Zhang Q, Tufail A, Wang RK, Lee AY (2019) Generating retinal flow maps from structural optical coherence tomography with artificial intelligence. Sci Rep 9(1):5694. https://doi.org/10.1038/s41598-019-42042-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Fawzi AA (2017) Consensus on optical coherence tomographic angiography nomenclature: do we need to develop and learn a new language? JAMA Ophthalmol 135(4):377–378. https://doi.org/10.1001/jamaophthalmol.2017.0149

    Article  PubMed  PubMed Central  Google Scholar 

  74. Kamalipour A, Moghimi S, Hou H et al (2021) OCT angiography artifacts in glaucoma. Ophthalmology 128(10):1426–1437. https://doi.org/10.1016/j.ophtha.2021.03.036

    Article  PubMed  Google Scholar 

Download references

Funding

The authors did not receive any funding.

Author information

Authors and Affiliations

Authors

Contributions

SSM (Suria S Mannil) and RSK (Rajesh S Kumar) conceived of and designed the work described here. SSM wrote the first draft of the paper. RSK and AA (Anirudda Agarwal) contributed to revision and editing and provided important intellectual content. IPC (Ian P Conner) contributed to the critical review.

Corresponding author

Correspondence to Rajesh S. Kumar.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mannil, S.S., Agarwal, A., Conner, I.P. et al. A comprehensive update on the use of optical coherence tomography angiography in glaucoma. Int Ophthalmol 43, 1785–1802 (2023). https://doi.org/10.1007/s10792-022-02574-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10792-022-02574-1

Keywords

Navigation