Skip to main content

Advertisement

Log in

In Vitro efficacy of cyclosporine a and various antiseptics and antiviral drugs on adenovirus genotype 8, a common cause of epidemic keratoconjunctivitis

  • Original Paper
  • Published:
International Ophthalmology Aims and scope Submit manuscript

Abstract

Purpose

To evaluate the in vitro efficacy of cidofovir, ganciclovir, povidone-iodine, chlorhexidine, and cyclosporine A on adenovirus genotype 8.

Methods

Conjunctival samples were collected from patients with adenoviral conjunctivitis and cultured in A549 cells. Adenovirus diagnosis was confirmed by RT-PCR. For each drug, the 50% cytotoxic concentration (CC 50 ) was determined. Subsequently, the antiviral activity was tested at concentrations below CC 50, and the 50% inhibitor concentration (IC 50 ) of drugs was determined

Results

While the IC 50 of cidofovir against adenovirus genotype 8 was 3.07 ± 0.8 µM, ganciclovir, povidone-iodine, chlorhexidine, and cyclosporine A were not found to be effective against adenovirus genotype 8 at concentrations below the CC 50 value.

Conclusions

Cidofovir was found effective and the IC 50 value was within the ranges in the literature. Ganciclovir and cyclosporine A were found to be ineffective at doses below the cytotoxic dose, povidone-iodine and chlorhexidine was found to be highly cytotoxic.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Ghebremedhin B (2014) Human adenovirus: viral pathogen with increasing importance. Eur J Microbiol Immunol 4:26–33. https://doi.org/10.1556/EuJMI.4.2014.1.2

    Article  CAS  Google Scholar 

  2. Meyer-Rusenberg B, Loderstadt U, Richard G, Kauffers PM, Gesser C (2011) Epidemic keratoconjunctivitis: the current situation and recommendations for prevention and treatment. Dtsch Arztebl Int 108:475–480. https://doi.org/10.3238/arztebl.2011.0475

    Article  PubMed  PubMed Central  Google Scholar 

  3. Jernigan JA, Lowry BS, Hayden FG, Kyger SA, Conmay BP, Gröschel DH et al (1993) Adenovirus type 8 epidemic keratoconjunctivitis in an eye clinic: risk factors and control. J Infect Dis 167:1307–1313. https://doi.org/10.1093/infdis/167.6.1307

    Article  CAS  PubMed  Google Scholar 

  4. Ariga T, Shimada Y, Shiratori K, Ohgami K, Yamazaki S, Tagawa Y et al (2005) Five new genome types of adenovirus type 37 caused epidemic keratoconjunctivitis in Sapporo, Japan, for more than 10 years. J Clin Microbiol 43:726–732. https://doi.org/10.1128/JCM.43.2.726-732.2005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Adhikary AK, Ushijima H, Fujimoto T (2012) Human adenovirus type 8 genome typing. J Med Microbiol 61:1491–1503. https://doi.org/10.1099/jmm.0.044172-0

    Article  CAS  PubMed  Google Scholar 

  6. Adhikary AU, Banik U (2014) Human adenovirus type 8: the major agent of epidemic keratoconjunctivitis (EKC). J Clin Virol 61:477–486. https://doi.org/10.1016/j.jcv.2014.10.015

    Article  CAS  PubMed  Google Scholar 

  7. Baba M, Mori S, Shigeta S, De Clerq E (1987) Selective inhibitory effect of (S)-9-(3-Hydroxy-2-Phosphonylmethoxypropyl) adenine and 2’-NorCyclic GMP on adenovirus replication In Vitro. Antimicrob Agents Chemother 31:337–339. https://doi.org/10.1128/AAC.31.2.337

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Hillenkamp J, Reinhard T, Ross RS et al (2001) Topical treatment of acute adenoviral keratoconjunctivitis with 0.2% cidofovir and 1% cyclosporine: a controlled clinical pilot study. Arch Ophthalmol 119:1487–1491. https://doi.org/10.1001/archopht.119.10.1487

    Article  CAS  PubMed  Google Scholar 

  9. McDonnell G, Russell AD (1999) Antiseptics and disinfectants: activity, action and resistance. Clin Microbiol Rev 12:147–179. https://doi.org/10.1128/CMR.12.1.147

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Bailey A, Longson M (1972) Virucidal activity of chlorhexidine on strains of Herpesvirus hominis, poliovirus, and adenovirus. J Clin Pathol 25:76–78. https://doi.org/10.1136/jcp.25.1.76

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Kinchington PR, Romanowski EG, Jerold Gordon Y (2005) Prospects for adenovirus antivirals. J Antimicrob Chemother 55:424–429. https://doi.org/10.1093/jac/dki057

    Article  CAS  PubMed  Google Scholar 

  12. Trousdale MD, Goldschmidt PL, Nóbrega R (1994) Activity of ganciclovir against human adenovirus type-5 infection in cell culture and cotton rat eyes. Cornea 13:435–439. https://doi.org/10.1097/00003226-199409000-00011

    Article  CAS  PubMed  Google Scholar 

  13. Yabiku ST, Yabiku MM, Bottos KM et al (2011) Ganciclovir 0.15% ophthalmic gel in the treatment of adenoviral keratoconjunctivitis. Arq Bras Oftalmol 74:417–421. https://doi.org/10.1590/s0004-27492011000600007

    Article  PubMed  Google Scholar 

  14. Monnerat N, Bossart W, Thiel MA (2006) Povidone-iodine for treatment of adenoviral conjunctivitis: an in vitro study. Klin Monbl Augenheilkd 223:349–352. https://doi.org/10.1055/s-2006-926633

    Article  CAS  PubMed  Google Scholar 

  15. Chigbu DI, Labib BA (2018) Pathogenesis and management of adenoviral keratoconjunctivitis. Infect Drug Resist 11:981–993. https://doi.org/10.2147/IDR.S162669

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Kawana R, Kitamura T, Nakagomi O et al (1997) Inactivation of human viruses by povidone-iodine in comparison with other antiseptics. Dermatology 195:29–35. https://doi.org/10.1159/000246027

    Article  PubMed  Google Scholar 

  17. Sriwilaijaroen N, Wilairat P, Hiramatsu H et al (2009) Mechanisms of the action of povidone-iodine against human and avian influenza A viruses: its effects on hemagglutination and sialidase activities. Virol J 6:124. https://doi.org/10.1186/1743-422X-6-124

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Kunt Z, Yagmur M, Kandemir H et al (2002) In Vitro efficacy of chlorhexidine and a riboflavin/UVA combination on fungal agents of keratitis. Curr Eye Res 45:7–11. https://doi.org/10.1186/1743-422X-6-124

    Article  CAS  Google Scholar 

  19. Rahman MR, Johnson GJ, Husain R, Howlader SA, Minassian DC (1998) Randomised trial of 0.2% chlorhexidine gluconate and 2.5% natamycin for fungal keratitis in Bangladesh. Br J Ophthalmol 82:919–925. https://doi.org/10.1136/bjo.82.8.919

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Geffen N, Norman G, Kheradiya NS, Assia EI (2009) Chlorhexidine gluconate 0,002% as adjunct to primary tratment for corneal bacterial ulcers. Isr Med Assoc J 11:664–668

    PubMed  Google Scholar 

  21. Shen Z, He H, Wu Y, Li J (2013) Cyclosporin a inhibits rotavirus replication and restores interferon-beta signaling pathway in vitro and in vivo. Plos One 8:e71815. https://doi.org/10.1371/journal.pone.0071815

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Asena L, SıngarOzdemir E, Burcu A et al (2017) Comparison of clinical outcome with different treatment regimens in acute adenoviral keratoconjunctivitis. Eye 31:781–787. https://doi.org/10.1038/eye.2017.4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Lin F, Young HA (2014) Interferons: success in anti-viral immunotherapy. Cytokine Growth Factor Rev 25:369–376. https://doi.org/10.1016/j.cytogfr.2014.07.015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Huang J, Kadonosono K, Uchio E (2014) Antiadenoviral effects of ganciclovir in types inducing keratoconjunctivitis by quantitative polymerase chain reaction methods. Clin Ophthalmol 8:315–320. https://doi.org/10.2147/OPTH.S55284

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Uchio E, Inoue H, Kadonosono K (2013) Anti-adenoviral effects of human cationic antimicrobial protein-18/LL-37, an antimicrobial peptide, by quantitative polymerase chain reaction. Korean J Ophthalmol 27(3):199–203. https://doi.org/10.3341/kjo.2013.27.3.199

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Toth K, Ying B, Tollefson AE et al (2015) Valganciclovir inhibits human adenovirus replication and pathology in permissive immunosuppressed female and male Syrian hamsters. Viruses 7(3):1409–1428. https://doi.org/10.3390/v7031409

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Morfin F, Dupuis-Girod S, Frobert E et al (2009) Differential susceptibility of adenovirus clinical isolates to cidofovir and ribavirin is not related to species alone. Antivir Ther 14(1):55–61

    Article  CAS  PubMed  Google Scholar 

  28. Sanchez-Cespedes J, Moyer CL, Whitby LR, Boger DL, Nemerow GR (2014) Inhibition of adenovirus replication by a trisubstituted piperazin-2-one derivative. Antiviral Res 108:65–73. https://doi.org/10.1016/j.antiviral.2014.05.010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. De Olviera CB, Stevenson D, LaBree L et al (1996) Evaluation of Cidofovir (HPMPC, GS-504) against adenovirus type 5 infection in vitro and in a New Zealand rabbit ocular model. Antiviral Res 31:165–172. https://doi.org/10.1016/0166-3542(95)00962-0

    Article  Google Scholar 

  30. Gordon YJ, Romanowski EG, Araullo-Cruz T (1994) Topical HPMPC inhibits adenovirus type 5 in the New Zealand rabbit ocular replication model. Invest Ophthalmol Vis Sci 35:4135–4143

    CAS  PubMed  Google Scholar 

  31. Woods G, Young A (1988) Use of A-549 cells in a clinical virology laboratory. J Clin Microbiol 26:1026–1028. https://doi.org/10.1128/jcm.26.5.1026-1028.1988

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Lipson S, Poshni IA, Ashley RL, Grady LJ, Ciamician Z, Teichberg S (1993) Presumptive identification of common adenovirus serotypes by the development of differential cytopathic effects in the human lung carcinoma (A549) cell culture. FEMS Microbiol Lett 113:175–182. https://doi.org/10.1111/j.1574-6968.1993.tb06510.x

    Article  CAS  PubMed  Google Scholar 

  33. Affedt J, Rathod NG, Fernandez KB et al (2012) Ganciclovir in the treatment of ophthalmic viral infections—case reports. US Ophthalmic Rev 5:100–104

    Article  Google Scholar 

  34. Tunay ZO, Ozdemir O, Petricli IS (2015) Povidone iodine in the treatment of adenoviral conjunctivitis in infants. Cutan Ocul Toxicol 34:12–15. https://doi.org/10.3109/15569527.2014.888077

    Article  CAS  Google Scholar 

  35. Wood A, Payne D (1998) The action of three antiseptics/disinfectants against enveloped and non-enveloped viruses. J Hosp Infect 38:283–295. https://doi.org/10.1016/s0195-6701(98)90077-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Springthorpe V, Grenier J, Lloyd-Evans N, Sattar SA (1986) Chemical disinfection of human rotaviruses: efficacy of commercially-available products in suspension tests. J Hyg 97:139–161. https://doi.org/10.1017/s0022172400064433

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Vahlne A, Larsson PA, Horal P et al (1992) Inhibition of herpes simplex virus production in vitro by cyclosporin A. Arch Virol 122:61–75. https://doi.org/10.1007/BF01321118

    Article  CAS  PubMed  Google Scholar 

  38. Sohn SY, Hearing P (2019) Adenoviral strategies to overcome innate cellular responses to infection. FEBS Lett 593:3484–3495. https://doi.org/10.1002/1873-3468.13680

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Spadea L, Tonti E, Spaterna A, Marchegiani A (2018) Use of ozone-based eye drops: a series of cases in veterinary and human spontaneous ocular pathologies. Case Rep Ophthalmol 9(2):287–298. https://doi.org/10.1159/000488846

    Article  PubMed  PubMed Central  Google Scholar 

  40. Murray BK, Ohmine S, Tomer DP, Jensen KJ, Johnson FB, Kirsi JJ, Robison RA, O’Neill KL (2008) Virion disruption by ozone-mediated reactive oxygen species. J Virol Methods 153(1):74–77. https://doi.org/10.1016/j.jviromet.2008.06.004

    Article  CAS  PubMed  Google Scholar 

  41. Kashiwagi K, Saito K, Wang YD, Takahashi H, Ishijima K, Tsukahara S (2001) Safety of ozonated solution as an antiseptic of the ocular surface prior to ophthalmic surgery. Ophthalmologica 215:351–356. https://doi.org/10.1159/000050884

    Article  CAS  PubMed  Google Scholar 

  42. Cagini C, Mariniello M, Messina M, Muzi A, Balducci C, Moretti A, Levorato L, Menacci A (2020) The role of ozonized oil and a combination of tobramycin/dexamethasone eye drops in the treatment of viral conjunctivitis: a randomized clinical trial. Int Ophthalmol 40(12):3209–3215. https://doi.org/10.1007/s10792-020-01503-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This study was supported by Cukurova University, Scientific Research Projects Unit. Project No: TTU-2019–12009.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection and analysis were performed by Gokhan Ozturk and Fugen Yarkin. The first draft of the manuscript was written by Aynura Sariyeva Aydamirov and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Aynura Sariyeva Aydamirov.

Ethics declarations

Conflict of interest

Authors declare they have no conflict of interest.

Ethical approval

The study was compliant with the Declaration of Helsinki and additional approval was obtained from the Ethics Committee of Cukurova University, Medical Faculty, Adana, Turkey. (Number of meetings: 87; number of decisions: 9).

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aydamirov, A.S., Harbiyeli, I.I., Ozturk, G. et al. In Vitro efficacy of cyclosporine a and various antiseptics and antiviral drugs on adenovirus genotype 8, a common cause of epidemic keratoconjunctivitis. Int Ophthalmol 43, 1701–1710 (2023). https://doi.org/10.1007/s10792-022-02567-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10792-022-02567-0

Keywords

Navigation