Skip to main content

Advertisement

Log in

Exosomal microRNA-222-3p increases UVB sensitivity of lens epithelium cells by suppressing MGMT

  • Original Paper
  • Published:
International Ophthalmology Aims and scope Submit manuscript

Abstract

Background

Age-related cataract (ARC) is a leading cause of blindness worldwide with multiple pathogenic factors. Oxidative damage of lens epithelium cells (LECs) is one of the well-accepted pathogenesis of ARC which can be regulated by DNA repair genes (DRGs). The present research aimed to clarify the regulatory mechanism of exosomal microRNAs (miRNAs) on DRGs in LECs.

Methods

The LECs oxidative damage model was established by UVB-irradiation on SRA01/04 (human lens epithelium cell line). Exosomes from UVB-irradiated cells (UVB-exo) and exosomes from normal control cells (NC-exo) were collected from the culture medium. To explore the functions of LECs exosomes, SRA01/04 were incubated with UVB-exo/NC-exo. Then, we detected SRA01/04 proliferation, viability and apoptosis respectively using 5′-ethynyl-2′-deoxyuridine (EdU), cell-counting kit-8 (CCK-8) and TdT-mediated dUTP Nick-End Labeling (TUNEL) assay. Next, the miRNA expression profiles of UVB-exo and NC-exo were identified by miRNA microarrays. RNA expression in exosomes, cells, and clinical samples was verified by qRT-PCR. The location and expression of MGMT and CD63 proteins were detected by immunofluorescence and western blot. The 3′UTR regulation of miR-222-3p to MGMT was verified by luciferase analyses.

Results

MGMT down-regulated while miR-222-3p up-regulated in LECs sub-central anterior capsule from ARC lenses. MGMT and miR-222-3p expressions in central and peripheral LECs from anterior lens capsules were differential. UVB-exo can transport the up-regulated miR-222-3p from oxidative-damaged LECs to normal LECs, which could suppress MGMT expression and increase UVB sensitivity of LECs.

Conclusions

Findings on exosomal miRNA functions provided novel insights into pathogenesis of ARC. Exosomal miR-222-3p can be a potential target for prevention and cure of ARC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

References

  1. Yanoff M, Duker J (2019) Myron Yanoff and Jay S. Duker: ophthalmology. Springer, St. Louis

    Google Scholar 

  2. Fukuoka H, Afshari NA (2017) The impact of age-related cataract on measures of frailty in an aging global population. Curr Opin Ophthalmol 28(1):93–97

    Article  PubMed  Google Scholar 

  3. Flaxman SR, Bourne RRA, Resnikoff S et al (2017) Global causes of blindness and distance vision impairment 1990–2020: a systematic review and meta-analysis. Lancet Glob Health 5(12):e1221–e1234

    Article  PubMed  Google Scholar 

  4. Ay ÖETM, Eser E (2017) Nuclear and mitochondrial DNA of age-related cataract patients are susceptible to oxidative damage. Curr Eye Res 42(4):583–588

    Article  PubMed  Google Scholar 

  5. Kang L, Zhao W, Zhang G et al (2015) Acetylated 8-oxoguanine DNA glycosylase 1 and its relationship with p300 and SIRT1 in lens epithelium cells from age-related cataract. Exp Eye Res 135:102–108

    Article  CAS  PubMed  Google Scholar 

  6. Beebe DC, Holekamp NM, Shui Y-B (2010) Oxidative damage and the prevention of age-related cataracts. Ophthalmic Res 44(3):155–165

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Li F, Wang Y, Zhang G et al (2014) Expression and methylation of DNA repair genes in lens epithelium cells of age-related cataract. Mutat Res 766–767:31–36

    Article  PubMed  Google Scholar 

  8. Wang Y, Zhang J, Wu J et al (2017) Expression of DNA repair genes in lens cortex of age-related cortical cataract. Exp Mol Pathol 102(2):219–223

    Article  CAS  PubMed  Google Scholar 

  9. Rong H, Gu S, Zhang G et al (2017) MiR-2964a-5p binding site SNP regulates ATM expression contributing to age-related cataract risk. Oncotarget 8(49):84945–84957

    Article  PubMed  PubMed Central  Google Scholar 

  10. Gu S, Rong H, Zhang G et al (2016) Functional SNP in 3’-UTR microRNA-binding site of ZNF350 confers risk for age-related cataract. Hum Mutat 37(11):1223–1230

    Article  CAS  PubMed  Google Scholar 

  11. Xiang J, Chen Q, Kang L et al (2019) LncRNA PLCD3-OT1 functions as a CeRNA to prevent age-related cataract by sponging miR-224-5p and regulating PLCD3 expression. Invest Ophthalmol Vis Sci 60(14):4670–4680

    Article  CAS  PubMed  Google Scholar 

  12. Tu Y, Li L, Qin B et al (2019) Long noncoding RNA glutathione peroxidase 3-antisense inhibits lens epithelial cell apoptosis by upregulating glutathione peroxidase 3 expression in age-related cataract. Mol Vis 25:734–744

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Wu C, Lin H, Wang Q et al (2012) Discrepant expression of microRNAs in transparent and cataractous human lenses. Invest Ophthalmol Vis Sci 53(7):3906–3912

    Article  CAS  PubMed  Google Scholar 

  14. Zou X, Kang L, Yang M et al (2018) MicroRNA binding mediated functional sequence variant in 3’-UTR of DNA repair Gene XPC in Age-related Cataract. Sci Rep 8(1):15198

    Article  PubMed  PubMed Central  Google Scholar 

  15. Denzer K, Kleijmeer MJ, Heijnen HF et al (2000) Exosome: from internal vesicle of the multivesicular body to intercellular signaling device. J Cell Sci 113(Pt 19):3365–3374

    Article  CAS  PubMed  Google Scholar 

  16. Rashed MH, Bayraktar E, Helal GK et al (2017) Exosomes: from garbage bins to promising therapeutic targets. Int J Mol Sci 18(3):538

    Article  Google Scholar 

  17. Colombo M, Raposo G, Théry C (2014) Biogenesis, secretion, and intercellular interactions of exosomes and other extracellular vesicles. Annu Rev Cell Dev Biol 30:255–289

    Article  CAS  PubMed  Google Scholar 

  18. Cheng T, Xu M, Qin B et al (2019) lncRNA H19 contributes to oxidative damage repair in the early age-related cataract by regulating miR-29a/TDG axis. J Cell Mol Med 23(9):6131–6139

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Xiang J, Kang L, Gao H et al (2019) BLM can regulate cataract progression by influencing cell vitality and apoptosis. Exp Eye Res 178:99–107

    Article  CAS  PubMed  Google Scholar 

  20. López-Romero P (2011) Pre-processing and differential expression analysis of Agilent microRNA arrays using the AgiMicroRna Bioconductor library. BMC Genomics 12:64

    Article  PubMed  PubMed Central  Google Scholar 

  21. Chylack LT Jr, Wolfe JK, Singer DM et al (1993) The lens opacities classification system III. The longitudinal study of cataract study group. Arch Ophthalmol 111(6):831–836

    Article  PubMed  Google Scholar 

  22. Milane L, Singh A, Mattheolabakis G et al (2015) Exosome mediated communication within the tumor microenvironment. J Control Release 219:278–294

    Article  CAS  PubMed  Google Scholar 

  23. Wu C, Liu Z, Ma L et al (2017) MiRNAs regulate oxidative stress related genes via binding to the 3’ UTR and TATA-box regions: a new hypothesis for cataract pathogenesis. BMC Ophthalmol 17(1):142

    Article  PubMed  PubMed Central  Google Scholar 

  24. Shi Y, Maria AD, Lubura S et al (2014) The penny pusher: a cellular model of lens growth. Invest Ophthalmol Vis Sci 56(2):799–809

    Article  PubMed  Google Scholar 

  25. Reddan JR, Giblin FJ, Dziedzic DC et al (1995) Hydrogen peroxide affects specific epithelial subpopulations in cultured rabbit lenses. Invest Ophthalmol Vis Sci 36(2):289–299

    CAS  PubMed  Google Scholar 

  26. Hashemi H, Pakzad R, Yekta A et al (2020) Global and regional prevalence of age-related cataract: a comprehensive systematic review and meta-analysis. Eye (Lond) 34(8):1357–1370

    Article  PubMed  Google Scholar 

  27. Zheng L-r, Ma J-j, Zhou D-x et al (2014) Association between DNA repair genes (XPD and XRCC1) polymorphisms and susceptibility to age-related cataract (ARC): a meta-analysis. Graefes Arch Clin Exp Ophthalmol 252(8):1259–1266

    Article  CAS  PubMed  Google Scholar 

  28. Löfgren S (2017) Solar ultraviolet radiation cataract. Exp Eye Res 156:112–116

    Article  PubMed  Google Scholar 

  29. Prasad R, Katiyar SK (2017) Crosstalk among UV-induced inflammatory mediators, DNA damage and epigenetic regulators facilitates suppression of the immune system. Photochem Photobiol 93(4):930–936

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Zhang J, Yan H, Löfgren S et al (2012) Ultraviolet radiation-induced cataract in mice: the effect of age and the potential biochemical mechanism. Invest Ophthalmol Vis Sci 53(11):7276–7285

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Hua H, Yang T, Huang L et al (2019) Protective effects of lanosterol synthase up-regulation in UV-B-induced oxidative stress. Front Pharmacol 10:947

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Lv J, Xing Y (2018) Effects of UV on apoptotic factors in lens epithelial cells of an animal model. Exp Ther Med 16(3):2309–2312

    PubMed  PubMed Central  Google Scholar 

  33. Zheng Y-P, Zhang S-B, Wang F et al (2016) Effects of lentiviral RNA interference-mediated downregulation of integrin-linked kinase on biological behaviors of human lens epithelial cells. Int J Ophthalmol 9(1):21–28

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Zhou W, Xu J, Wang C et al (2019) miR-23b-3p regulates apoptosis and autophagy via suppressing SIRT1 in lens epithelial cells. J Cell Biochem 120(12):19635–19646

    Article  CAS  PubMed  Google Scholar 

  35. Ji Y, Cai L, Zheng T et al (2015) The mechanism of UVB irradiation induced-apoptosis in cataract. Mol Cell Biochem 401(1–2):87–95

    Article  CAS  PubMed  Google Scholar 

  36. Gianicolo US-WEAL, Cámara RJ, Wegener A et al (2019) Ionising radiation and lens opacities in interventional physicians: results of a German pilot study. J Radiol Prot 39(4):1041–1059

    Article  PubMed  Google Scholar 

  37. Besharse J, Battelle B, Dana R et al (2010) Encyclopedia of the eye. Academic Press, Boston

    Google Scholar 

  38. Vrensen GF (1994) UV-B and early cortical and nuclear changes in the human lens. Doc Ophthalmol 88(3–4):255–261

    PubMed  Google Scholar 

  39. Kantorow M, Huang Q, Yang X et al (2000) Increased expression of osteonectin/SPARC mRNA and protein in age-related human cataracts and spatial expression in the normal human lens. Mol Vis 6:24–29

    CAS  PubMed  Google Scholar 

  40. Yu X, Odenthal M, Fries JWU (2016) Exosomes as miRNA carriers: formation-function-future. Int J Mol Sci 17(12):2028

    Article  PubMed  PubMed Central  Google Scholar 

  41. Han KY, Dugas-Ford J, Seiki M et al (2015) Evidence for the involvement of MMP14 in MMP2 processing and recruitment in exosomes of corneal fibroblasts. Invest Ophthalmol Vis Sci 56(9):5323–5329

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Kang G-Y, Bang JY, Choi AJ et al (2014) Exosomal proteins in the aqueous humor as novel biomarkers in patients with neovascular age-related macular degeneration. J Proteome Res 13(2):581–595

    Article  CAS  PubMed  Google Scholar 

  43. Dismuke WM, Klingeborn M, Stamer WD (2016) Mechanism of fibronectin binding to human trabecular meshwork exosomes and its modulation by dexamethasone. PLoS ONE 11(10):e0165326

    Article  PubMed  PubMed Central  Google Scholar 

  44. Katome T, Semba KNYMK, Egawa M et al (2015) Expression of intraocular peroxisome proliferator-activated receptor gamma in patients with proliferative diabetic retinopathy. J Diabetes Complicat 29(2):275–281

    Article  Google Scholar 

  45. Wang X, Zhang H, Yang H et al (2020) Exosome-delivered circRNA promotes glycolysis to induce chemoresistance through the miR-122-PKM2 axis in colorectal cancer. Mol Oncol 14(3):539–555

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Wang H, Yang F, Wang Y et al (2019) Odontoblastic exosomes attenuate apoptosis in neighboring cells. J Dent Res 98(11):1271–1278

    Article  CAS  PubMed  Google Scholar 

  47. Roos WP, Batista LFZ, Naumann SC et al (2007) Apoptosis in malignant glioma cells triggered by the temozolomide-induced DNA lesion O6-methylguanine. Oncogene 26(2):186–197

    Article  CAS  PubMed  Google Scholar 

  48. Meira LB, Calvo JA, Shah D et al (2014) Repair of endogenous DNA base lesions modulate lifespan in mice. DNA Repair (Amst) 21:78–86

    Article  CAS  PubMed  Google Scholar 

  49. Paranjpe A, Zhang R, Ali-Osman F et al (2014) Disulfiram is a direct and potent inhibitor of human O6-methylguanine-DNA methyltransferase (MGMT) in brain tumor cells and mouse brain and markedly increases the alkylating DNA damage. Carcinogenesis 35(3):692–702

    Article  CAS  PubMed  Google Scholar 

  50. Lee J, Rhee K-J, Kim SH et al (2015) O6-Methylguanine-DNA methyltransferase (MGMT) gene expression is associated with ultraviolet B (UVB)-induced cell growth inhibition and recovery. Genes Genomics 37(9):789–796

    Article  CAS  Google Scholar 

  51. Blough MD, Zlatescu MC, Cairncross JG (2007) O6-methylguanine-DNA methyltransferase regulation by p53 in astrocytic cells. Cancer Res 67(2):580–584

    Article  CAS  PubMed  Google Scholar 

  52. Quintavalle C, Mangani D, Romano GRG et al (2013) MiR-221/222 target the DNA methyltransferase MGMT in glioma cells. PLoS ONE 8(9):e74466

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Lu TX, Rothenberg ME (2018) MicroRNA. J Allergy Clin Immunol 141(4):1202–1207

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This study was funded by the National Natural Science Foundation of China (Grant Nos.: 81974129, 82171038, 82101101), and the Science and Technology Project of Nantong Municipality (Grant No.: JC2019078).

Author information

Authors and Affiliations

Authors

Contributions

JL, LK and PL contributed equally to this work. All authors participated in experiments performing, data analysis and manuscript review before submission.

Corresponding author

Correspondence to Huaijin Guan.

Ethics declarations

Conflicts of interest

All authors certify that they have no affiliations with or involvement in any organization or entity with any financial interest (such as honoraria; educational grants; participation in speakers’ bureaus; membership, employment, consultancies, stock ownership, or other equity interest; and expert testimony or patent-licensing arrangements), or non-financial interest (such as personal or professional relationships, affiliations, knowledge or beliefs) in the subject matter or materials discussed in this manuscript.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the Ethics Committee from Affiliated Hospital of Nantong University and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Luo, J., Li, P., Kang, L. et al. Exosomal microRNA-222-3p increases UVB sensitivity of lens epithelium cells by suppressing MGMT. Int Ophthalmol 43, 1611–1628 (2023). https://doi.org/10.1007/s10792-022-02560-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10792-022-02560-7

Keywords

Navigation