Skip to main content

Advertisement

Log in

miR-125a-3p regulates apoptosis by suppressing TMBIM4 in lens epithelial cells

  • Original Paper
  • Published:
International Ophthalmology Aims and scope Submit manuscript

Abstract

Purpose

To explore the regulatory effect of miR-125a-3p on lens epithelial cells (LECs) under ultraviolet radiation B (UVB) irradiation.

Methods

The expression of miR-125a-3p in age-related cataract (ARC) specimens and cell models was detected by qRT-PCR. UVB was utilized to establish DNA damage model of LECs. Cell count kit-8 was applied in detecting cell viability. Cell apoptosis ratio was analyzed by flow cytometry. Dual luciferase reports were applied to analyze the mechanism between miRNA and target genes. Nanoparticle tracking analysis, and Western blot were used to identify whether the exosomes were typical exosomes.

Results

miR-125a-3p was upregulated in ARC tissues and LECs treated with UVB. Knockdown of miR-125a-3p in LECs significantly decreased apoptosis and increased viability of UVB-irradiated LECs. We predicted that miR-125a-3p could regulate transmembrane Bax inhibitor motif containing 4 (TMBIM4) by the bioinformatics databases TargetScan, miRBase, and miRWalk. Luciferase reporter assays demonstrated that miR-125a-3p may suppress TMBIM4 protein translation by binding to 3′UTR of TMBIM4 mRNA. Overexpression of miR-125a-3p decreased TMBIM4, which suggested that miR-125a-3p could inhibit TMBIM4. Moreover, knockdown of TMBIM4 decreased cell viability and enhanced cell apoptosis during UVB irradiation. In addition, the exosome secretion of LECs irradiated by UVB was enhanced, and the expression of miR-125a-3p was high. Cell viability was significantly decreased, and cell apoptosis was increased during UVB-exos treatment.

Conclusion

This study indicated that miR-125a-3p regulated apoptosis by suppressing TMBIM4 in LECs under oxidative damage, providing a new idea for clinical therapeutic target of cataract.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

Data are available upon reasonable request.

Abbreviations

LECs:

Lens epithelial cells

UVB:

Ultraviolet radiation B

ARC:

Age-related cataract

TMBIM4:

Transmembrane Bax inhibitor motif containing 4

MVBs:

Multivesicular bodies

STR:

Short tandem repeat

DMEM:

Dulbecco’s modified Eagle medium

PBS:

Phosphate-buffered saline

SBI:

Exosome-depleted FBS

NC-exos:

Exosomes derived from normal conditions

UVB-exos:

Exosomes derived from UVB-treated conditions

PI:

Propidium iodide

Si-NC:

small interfering RNA negative control

NC-mimic:

Negative control mimic

References

  1. Zhao J, Xu X, Ellwein LB, Guan H, He M, Liu P, Lv J, Sheng X, Yang P, Yi J, Cai N, Yang M, Chen M, Deng L, Ding X, Du L, Li F, Liu X, Lu H, Shao C, Wang J, Zhuang W, An L (2019) Causes of visual impairment and blindness in the 2006 and 2014 nine-province surveys in rural China. Am J Ophthalmol 197:80–87. https://doi.org/10.1016/j.ajo.2018.09.011

    Article  PubMed  Google Scholar 

  2. Kim J, Han SY, Min H (2020) Ginseng for an eye: effects of ginseng on ocular diseases. J Ginseng Res 44(1):1–7. https://doi.org/10.1016/j.jgr.2018.11.006

    Article  PubMed  Google Scholar 

  3. Zhu J, Gong L, Zhao B (2020) MicroRNA-4328 promotes lens epithelial cell apoptosis by targeting NLR family, apoptosis inhibitory protein in age-related cataract. Cell Biochem Funct 38(2):149–157. https://doi.org/10.1002/cbf.3453

    Article  CAS  PubMed  Google Scholar 

  4. Xiang J, Chen Q, Kang L, Zhang G, Wang Y, Qin B, Wu J, Zhou T, Han Y, Guan H (2019) LncRNA PLCD3-OT1 functions as a CeRNA to prevent age-related cataract by sponging miR-224-5p and regulating PLCD3 expression. Invest Ophthalmol Vis Sci 60(14):4670–4680. https://doi.org/10.1167/iovs.19-27211

    Article  CAS  PubMed  Google Scholar 

  5. Kang L, Zou X, Zhang G, Xiang J, Wang Y, Yang M, Chen X, Wu J, Guan H (2019) A variant in a microRNA binding site in NEIL2 3′UTR confers susceptibility to age-related cataracts. FASEB J 33(9):10469–10476. https://doi.org/10.1096/fj.201802291R

    Article  CAS  PubMed  Google Scholar 

  6. Li T, Huang Y, Zhou W, Yan Q (2020) Let-7c-3p regulates autophagy under oxidative by targeting ATG3 in lens epithelial cells. Biomed Res Int 2020:6069390. https://doi.org/10.1155/2020/6069390

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Zhou W, Xu J, Wang C, Shi D, Yan Q (2019) miR-23b-3p regulates apoptosis and autophagy via suppressing SIRT1 in lens epithelial cells. J Cell Biochem 120(12):19635–19646. https://doi.org/10.1002/jcb.29270

    Article  CAS  PubMed  Google Scholar 

  8. Wei X, Xu X, Chen Z, Liang T, Wen Q, Qin N, Huang W, Huang X, Li Y, Li J, He J, Wei J, Huang R (2018) Protective Effects of 2-dodecyl-6-methoxycyclohexa-2,5-diene-1,4-dione isolated from Averrhoa carambola L. (Oxalidaceae) roots on neuron apoptosis and memory deficits in Alzheimer’s disease. Cell Physiol Biochem 49(3):1064–1073. https://doi.org/10.1159/000493289

    Article  CAS  PubMed  Google Scholar 

  9. Kronschlager M, Ruiss M, Dechat T, Findl O (2021) Single high-dose peroral caffeine intake inhibits ultraviolet radiation-induced apoptosis in human lens epithelial cells in vitro. Acta Ophthalmol 99(4):e587–e593. https://doi.org/10.1111/aos.14641

    Article  CAS  PubMed  Google Scholar 

  10. Kang LH, Zhang GW, Zhang JF, Qin B, Guan HJ (2020) Ganoderic acid A protects lens epithelial cells from UVB irradiation and delays lens opacity. Chin J Nat Med 18(12):934–940. https://doi.org/10.1016/S1875-5364(20)60037-1

    Article  CAS  PubMed  Google Scholar 

  11. Yao L, Yang L, Song H, Liu T, Yan H (2020) MicroRNA miR-29c-3p modulates FOS expression to repress EMT and cell proliferation while induces apoptosis in TGF-beta2-treated lens epithelial cells regulated by lncRNA KCNQ1OT1. Biomed Pharmacother 129:110290. https://doi.org/10.1016/j.biopha.2020.110290

    Article  CAS  PubMed  Google Scholar 

  12. Leslie PL, Franklin DA, Liu Y, Zhang Y (2018) p53 Regulates the expression of LRP1 and apoptosis through a stress intensity-dependent MicroRNA feedback loop. Cell Rep 24(6):1484–1495. https://doi.org/10.1016/j.celrep.2018.07.010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Li ZN, Ge MX, Yuan ZF (2020) MicroRNA-182-5p protects human lens epithelial cells against oxidative stress-induced apoptosis by inhibiting NOX4 and p38 MAPK signalling. BMC Ophthalmol 20(1):233. https://doi.org/10.1186/s12886-020-01489-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Gao W, Zhou X, Lin R (2020) miR-378a-5p and miR-630 induce lens epithelial cell apoptosis in cataract via suppression of E2F3. Braz J Med Biol Res 53(5):e9608. https://doi.org/10.1590/1414-431x20209608

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Li Q, Pan H, Liu Q (2019) MicroRNA-15a modulates lens epithelial cells apoptosis and proliferation through targeting B-cell lymphoma-2 and E2F transcription factor 3 in age-related cataracts. Biosci Rep. https://doi.org/10.1042/BSR20191773

  16. Liu JZ, Yin FY, Yan CY, Wang H, Luo XH (2017) Regulation of docetaxel sensitivity in prostate cancer cells by hsa-miR-125a-3p via modulation of metastasis-associated protein 1 signaling. Urology 105:208 e211-208 e217. https://doi.org/10.1016/j.urology.2017.01.001

    Article  Google Scholar 

  17. Xu X, Lv YG, Yan CY, Yi J, Ling R (2016) Enforced expression of hsa-miR-125a-3p in breast cancer cells potentiates docetaxel sensitivity via modulation of BRCA1 signaling. Biochem Biophys Res Commun 479(4):893–900. https://doi.org/10.1016/j.bbrc.2016.09.087

    Article  CAS  PubMed  Google Scholar 

  18. Jiang L, Chang J, Zhang Q, Sun L, Qiu X (2013) MicroRNA hsa-miR-125a-3p activates p53 and induces apoptosis in lung cancer cells. Cancer Invest 31(8):538–544. https://doi.org/10.3109/07357907.2013.820314

    Article  CAS  PubMed  Google Scholar 

  19. Li S, Li X, Zhao H, Gao M, Wang F, Li W (2015) Overexpression of microRNA125a3p effectively inhibits the cell growth and invasion of lung cancer cells by regulating the mouse double minute 2 homolog/p53 signaling pathway. Mol Med Rep 12(4):5482–5486. https://doi.org/10.3892/mmr.2015.4038

    Article  CAS  PubMed  Google Scholar 

  20. Perez-Hernandez J, Olivares D, Forner MJ, Ortega A, Solaz E, Martinez F, Chaves FJ, Redon J, Cortes R (2018) Urinary exosome miR-146a is a potential marker of albuminuria in essential hypertension. J Transl Med 16(1):228

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Creemers EE, Tijsen AJ, Pinto YM (2012) Circulating microRNAs: novel biomarkers and extracellular communicators in cardiovascular disease? Circ Res 110(3):483–495. https://doi.org/10.1161/CIRCRESAHA.111.247452

    Article  CAS  PubMed  Google Scholar 

  22. Xiang J, Kang L, Gao H, Wu J, Qin B, Zhou T, Zhang G, Guan H (2019) BLM can regulate cataract progression by influencing cell vitality and apoptosis. Exp Eye Res 178:99–107. https://doi.org/10.1016/j.exer.2018.08.022

    Article  CAS  PubMed  Google Scholar 

  23. Hu Z, He L, Wei J, Su Y, Wang W, Fan Z, Xu J, Zhang Y, Wang Y, Peng M, Zhao K, Zhang H, Liu C (2021) tmbim4 protects against triclocarban-induced embryonic toxicity in zebrafish by regulating autophagy and apoptosis. Environ Pollut 277:116873. https://doi.org/10.1016/j.envpol.2021.116873

    Article  CAS  PubMed  Google Scholar 

  24. Carrara G, Parsons M, Saraiva N, Smith GL (2017) Golgi anti-apoptotic protein: a tale of camels, calcium, channels and cancer. Open Biol 7(5):170045. https://doi.org/10.1098/rsob.170045

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Rashed MH, Bayraktar E, Helal GK, Abd-Ellah M, Amero P, Chavez-Reyes A, Rodriguez-Aguzyo C (2017) C Rodriguez-Aguayo (2017) Exosomes: from garbage bins to promising therapeutic targets. Int J Mol Sci 18(3):538. https://doi.org/10.3390/ijms18030538

    Article  CAS  Google Scholar 

  26. Milane L, Singh A, Mattheolabakis G, Suresh M, Amiji MM (2015) Exosome mediated communication within the tumor microenvironment. J Control Rel 219:278–294. https://doi.org/10.1016/j.jconrel.2015.06.029

    Article  CAS  Google Scholar 

  27. Jing R, Ma B, Qi T, Hu C, Liao C, Wen C, Shao Y, Pei C (2020) Long noncoding RNA OIP5-AS1 promotes cell apoptosis and cataract formation by blocking POLG expression under oxidative stress. Invest Ophthalmol Vis Sci 61(12):3. https://doi.org/10.1167/iovs.61.12.3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Yao L, Yan H (2020) MiR-182 inhibits oxidative stress and epithelial cell apoptosis in lens of cataract rats through PI3K/Akt signaling pathway. Eur Rev Med Pharmacol Sci 24(23):12001–12008. https://doi.org/10.26355/eurrev_202012_23988

    Article  CAS  PubMed  Google Scholar 

  29. Lofgren S (2017) Solar ultraviolet radiation cataract. Exp Eye Res 156:112–116. https://doi.org/10.1016/j.exer.2016.05.026

    Article  CAS  PubMed  Google Scholar 

  30. Abraham AG, Condon NG, West Gower E (2006) The new epidemiology of cataract. Ophthalmol Clin N Am 19(4):415–425. https://doi.org/10.1016/j.ohc.2006.07.008

    Article  Google Scholar 

  31. Song M, Wang N, Li Z, Zhang Y, Zheng Y, Yi P, Chen J (2020) miR-125a-3p suppresses the growth and progression of papillary thyroid carcinoma cell by targeting MMP11. J Cell Biochem 121(2):984–995. https://doi.org/10.1002/jcb.29333

    Article  CAS  PubMed  Google Scholar 

  32. Zhang H, Zhu X, Li N, Li D, Sha Z, Zheng X, Wang H (2015) miR-125a-3p targets MTA1 to suppress NSCLC cell proliferation, migration, and invasion. Acta Biochim Biophys Sin (Shanghai) 47(7):496–503. https://doi.org/10.1093/abbs/gmv039

    Article  CAS  PubMed  Google Scholar 

  33. Gu Z, Long J, Li Y, Wang X, Wang H (2019) MiR-125a-3p negatively regulates osteoblastic differentiation of human adipose derived mesenchymal stem cells by targeting Smad4 and Jak1. Am J Transl Res 11(4):2603–2615

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Xu Q, Liu Y, Pan H, Xu T, Li Y, Yuan J, Li P, Yao W, Yan W, Ni C (2019) Aberrant expression of miR-125a-3p promotes fibroblast activation via Fyn/STAT3 pathway during silica-induced pulmonary fibrosis. Toxicology 414:57–67. https://doi.org/10.1016/j.tox.2019.01.007

    Article  CAS  PubMed  Google Scholar 

  35. Yin F, Zhang JN, Wang SW, Zhou CH, Zhao MM, Fan WH, Fan M, Liu S (2015) MiR-125a-3p regulates glioma apoptosis and invasion by regulating Nrg1. PLoS ONE 10(1):e0116759. https://doi.org/10.1371/journal.pone.0116759

    Article  PubMed  PubMed Central  Google Scholar 

  36. Xing W, Yin Y, Yang S, Lu G (2020) GEM on proliferation and apoptosis of childhood AL cells through inhibiting c-myc expression by upregulating miR-125a-3p. Oncol Lett 19(4):2870–2874. https://doi.org/10.3892/ol.2020.11396

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Rojas-Rivera D, Hetz C (2015) TMBIM protein family: ancestral regulators of cell death. Oncogene 34(3):269–280. https://doi.org/10.1038/onc.2014.6

    Article  CAS  PubMed  Google Scholar 

  38. Gubser C, Bergamaschi D, Hollinshead M, Lu X, van Kuppeveld FJ, Smith GL (2007) A new inhibitor of apoptosis from vaccinia virus and eukaryotes. PLoS Pathog 3(2):e17. https://doi.org/10.1371/journal.ppat.0030017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Rojas-Rivera D, Armisen R, Colombo A, Martinez G, Eguiguren AL, Diaz A, Kiviluoto S, Rodriguez D, Patron M, Rizzuto R, Bultynck G, Concha ML, Sierralta J, Stutzin A, Hetz C (2012) TMBIM3/GRINA is a novel unfolded protein response (UPR) target gene that controls apoptosis through the modulation of ER calcium homeostasis. Cell Death Differ 19(6):1013–1026. https://doi.org/10.1038/cdd.2011.189

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Bailly-Maitre B, Fondevila C, Kaldas F, Droin N, Luciano F, Ricci JE, Croxton R, Krajewska M, Zapata JM, Kupiec-Weglinski JW, Farmer D, Reed JC (2006) Cytoprotective gene bi-1 is required for intrinsic protection from endoplasmic reticulum stress and ischemia-reperfusion injury. Proc Natl Acad Sci USA 103(8):2809–2814. https://doi.org/10.1073/pnas.0506854103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Shi ZY, Yang XX, Malichewe C, Li YS, Guo XL (2020) Exosomal microRNAs-mediated intercellular communication and exosome-based cancer treatment. Int J Biol Macromol 158:530–541. https://doi.org/10.1016/j.ijbiomac.2020.04.228

    Article  CAS  PubMed  Google Scholar 

  42. Liu J, Jiang F, Jiang Y, Wang Y, Li Z, Shi X, Zhu Y, Wang H, Zhang Z (2020) Roles of exosomes in ocular diseases. Int J Nanomed 15:10519–10538. https://doi.org/10.2147/IJN.S277190

    Article  CAS  Google Scholar 

  43. Elshelmani H, Rani S (2017) Exosomal MicroRNA Discovery in Age-Related Macular Degeneration. Methods Mol Biol 1509:93–113. https://doi.org/10.1007/978-1-4939-6524-3_10

    Article  CAS  PubMed  Google Scholar 

  44. Gu S, Liu Y, Zou J, Wang W, Wei T, Wang X, Zhu L, Zhang M, Zhu J, Xie T, Yao Y, Qiu L (2020) Retinal pigment epithelial cells secrete miR-202-5p-containing exosomes to protect against proliferative diabetic retinopathy. Exp Eye Res 201:108271. https://doi.org/10.1016/j.exer.2020.108271

    Article  CAS  PubMed  Google Scholar 

  45. Hong Y, Sun Y, Rong X, Li D, Lu Y, Ji Y (2020) Exosomes from adipose-derived stem cells attenuate UVB-induced apoptosis, ROS, and the Ca(2+) level in HLEC cells. Exp Cell Res 396(2):112321. https://doi.org/10.1016/j.yexcr.2020.112321

    Article  CAS  PubMed  Google Scholar 

  46. Ke Y, Fan X, Rui H, Xinjun R, Dejia W, Chuanzhen Z, Li X (2020) Exosomes derived from RPE cells under oxidative stress mediate inflammation and apoptosis of normal RPE cells through Apaf1/caspase-9 axis. J Cell Biochem. https://doi.org/10.1002/jcb.29713

    Article  PubMed  Google Scholar 

  47. Huang X, Ding J, Li Y, Liu W, Ji J, Wang H, Wang X (2018) Exosomes derived from PEDF modified adipose-derived mesenchymal stem cells ameliorate cerebral ischemia-reperfusion injury by regulation of autophagy and apoptosis. Exp Cell Res 371(1):269–277. https://doi.org/10.1016/j.yexcr.2018.08.021

    Article  CAS  PubMed  Google Scholar 

  48. Wang HS, Yang FH, Wang YJ, Pei F, Chen Z, Zhang L (2019) Odontoblastic Exosomes Attenuate Apoptosis in Neighboring Cells. J Dent Res 98(11):1271–1278. https://doi.org/10.1177/0022034519869580

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This study was supported by the National Science Foundation of China (82101101, 82171038 and 81974129), the Postdoctoral Science Foundation of China (2020M671562), the Postdoctoral Science Foundation of Jiangsu Province (2020Z318), the Science and Technology Project of Nantong Municipality (JCZ19088, Nantong, Jiangsu, China).

Author information

Authors and Affiliations

Authors

Contributions

LK, JL, PL: substantial contributions to the conception or design of the work; or the acquisition, analysis, or interpretation of data for the work. LK, GZ: drafting the article. HG: final approval of the version to be published. LK, JL, PL, GZ, MW, MJ, and HG: agreement to be accountable for all aspects of the work including questions related to the accuracy.

Corresponding author

Correspondence to Huaijin Guan.

Ethics declarations

Conflicts of interest

The authors declare that they have no conflict of interest.

Ethical approval

All patients signed an informed consent form before collecting specimens. This study was approved by.

the Ethics Committee of the Affiliated Hospital of Nantong University.

Consent to participate

Not applicable.

Patient consent for publication

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kang, L., Luo, J., Li, P. et al. miR-125a-3p regulates apoptosis by suppressing TMBIM4 in lens epithelial cells. Int Ophthalmol 43, 1261–1274 (2023). https://doi.org/10.1007/s10792-022-02524-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10792-022-02524-x

Keywords

Navigation