Skip to main content

Advertisement

Log in

Role of mucoadhesive agent in ocular delivery of ganciclovir microemulsion: cytotoxicity evaluation in vitro and ex vivo

  • Original Paper
  • Published:
International Ophthalmology Aims and scope Submit manuscript

Abstract

Purpose

The aim of the present study was to investigate increase in delivery of drug upon formulation as mucoadhesive microemulsion system and further to investigate possibility of any cytotoxic effects using such formulation.

Material and methods

Considering hydrophilic and small molecular nature of the drug, it was attempted to be formulated as microemulsion, by using pseudo ternary phase diagram method. Thus, three types of microemulsions were prepared; oil in water, water in oil type and chitosan-coated microemulsion. These microemulsions were characterized for several physicochemical properties like size, zeta potential, Polydispersity index, and compared for in vitro cell viability and ex vivo corneal irritation study.

Results

All three microemulsions were quite stable, transparent and homogenous systems. They showed similar drug release pattern, but highest ex vivo goat corneal permeation was observed with Chitosan coated microemulsion when compared with ganciclovir solution.

Conclusion

All microemulsions were found to be non-irritant in in vitro cell viability assay and ex vivo corneal irritation study, indicating the potential of using such systems for delivery of drug to eye.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Nayak K, Misra M (2018) A review on recent drug delivery systems for posterior segment of eye. Biomed Pharmacother 107:1564–1582

    Article  CAS  PubMed  Google Scholar 

  2. Joseph RR, Venkatraman SS (2017) Drug delivery to the eye: What benefits do nanocarriers offer? Nanomedicine 12:683–702. https://doi.org/10.2217/nnm-2016-0379

    Article  CAS  PubMed  Google Scholar 

  3. Sánchez-López E, Espina M, Doktorovova S et al (2017) Lipid nanoparticles (SLN, NLC): overcoming the anatomical and physiological barriers of the eye—Part I—barriers and determining factors in ocular delivery. Eur J Pharm Biopharm 110:70–75. https://doi.org/10.1016/j.ejpb.2016.10.009

    Article  CAS  PubMed  Google Scholar 

  4. Addo RT (2016) Ocular drug delivery: advances, challenges and applications. Ocular drug delivery: advances, Challenges and Applications. R. T. Addo. Springer International Publishing, Berlin, pp 1–185

    Chapter  Google Scholar 

  5. Barar J, Aghanejad A, Fathi M, Omidi Y (2016) Advanced drug delivery and targeting technologies for the ocular diseases. BioImpacts 6:49–67. https://doi.org/10.15171/bi.2016.07

  6. Port AD, Orlin A, Kiss S et al (2017) Cytomegalovirus retinitis: a review. J Ocul Pharmacol Ther 33:224–234. https://doi.org/10.1089/jop.2016.0140

    Article  CAS  PubMed  Google Scholar 

  7. Lin CZ, Xiang GL, Zhu XH et al (2018) Advances in the mechanisms of action of cancer-targeting oncolytic viruses (review). Oncol Lett 15:4053–4060. https://doi.org/10.3892/ol.2018.7829

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Yellepeddi VK, Palakurthi S (2016) Recent advances in topical ocular drug delivery. J Ocul Pharmacol Ther 32:67–82. https://doi.org/10.1089/jop.2015.0047

    Article  CAS  PubMed  Google Scholar 

  9. Al-Badr AA, Ajarim TDS (2018) Ganciclovir. In: Profiles of drug substances, excipients and related methodol. pp 1–208

  10. Tirucherai GS, Dias C, Mitra AK (2002) Corneal permeation of ganciclovir: Mechanism of ganciclovir permeation enhancement by acyl ester prodrug design. J Ocul Pharmacol Ther 18:535–548. https://doi.org/10.1089/108076802321021081

    Article  CAS  PubMed  Google Scholar 

  11. Patel K, Trivedi S, Luo S et al (2005) Synthesis, physicochemical properties and antiviral activities of ester prodrugs of ganciclovir. Int J Pharm 305:75–89. https://doi.org/10.1016/j.ijpharm.2005.08.024

    Article  CAS  PubMed  Google Scholar 

  12. Majumdar S, Nashed YE, Patel K et al (2005) Dipeptide monoester ganciclovir prodrugs for treating HSV-1-induced corneal epithelial and stromal keratitis: In vitro and in vivo evaluations. J Ocul Pharmacol Ther 21:463–474. https://doi.org/10.1089/jop.2005.21.463

    Article  CAS  PubMed  Google Scholar 

  13. Shen Y, Tu J (2007) Preparation and ocular pharmacokinetics of ganciclovir liposomes. AAPS J 9:E371–E377. https://doi.org/10.1208/aapsj0903044

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Merodio M, Irache JM, Valamanesh F, Mirshahi M (2002) Ocular disposition and tolerance of ganciclovir-loaded albumin nanoparticles after intravitreal injection in rats. Biomaterials 23:1587–1594. https://doi.org/10.1016/S0142-9612(01)00284-8

    Article  CAS  PubMed  Google Scholar 

  15. Herrero-Vanrell R, Ramirez L (2000) Biodegradable PLGA microspheres loaded with ganciclovir for intraocular administration. Enapsulation technique in vitro release profiles, and sterilization process. Pharm Res 17:1323–1328. https://doi.org/10.1023/A:1026464124412

    Article  CAS  PubMed  Google Scholar 

  16. Duvvuri S, Janoria KG, Pal D, Mitra AK (2007) Controlled delivery of ganciclovir to the retina with drug-loaded poly(D, L-lactide-co-glycolide) (PLGA) microspheres dispersed in PLGA-PEG-PLGA gel: A novel intravitreal delivery system for the treatment of cytomegalovirus retinitis. J Ocul Pharmacol Ther 23:264–274. https://doi.org/10.1089/jop.2006.132

    Article  CAS  PubMed  Google Scholar 

  17. Qaddoumi MG, Ueda H, Yang J et al (2004) The characteristics and mechanisms of uptake of PLGA nanoparticles in rabbit conjunctival epithelial cell layers. Pharm Res 21:641–648. https://doi.org/10.1023/B:PHAM.0000022411.47059.76

    Article  CAS  PubMed  Google Scholar 

  18. Akhter S, Ramazani F, Ahmad MZ et al (2013) Ocular pharmacoscintigraphic and aqueous humoral drug availability of ganciclovir-loaded mucoadhesive nanoparticles in rabbits. Eur J Nanomedicine 5:159–167. https://doi.org/10.1515/ejnm-2013-0012

    Article  CAS  Google Scholar 

  19. Wang Q, Sun C, Xu B et al (2018) Synthesis, physicochemical properties and ocular pharmacokinetics of thermosensitive in situ hydrogels for ganciclovir in cytomegalovirus retinitis treatment. Drug Deliv 25:59–69. https://doi.org/10.1080/10717544.2017.1413448

    Article  CAS  PubMed  Google Scholar 

  20. Vandamme TF (2002) Microemulsions as ocular drug delivery systems: Recent developments and future challenges. Prog Retin Eye Res 21:15–34. https://doi.org/10.1016/S1350-9462(01)00017-9

    Article  CAS  PubMed  Google Scholar 

  21. Bachu RD, Stepanski M, Alzhrani RM et al (2018) Development and evaluation of a novel microemulsion of dexamethasone and tobramycin for topical ocular administration. J Ocul Pharmacol Ther 34:312–324. https://doi.org/10.1089/jop.2017.0082

    Article  CAS  PubMed  Google Scholar 

  22. Alany RG, Rades T, Nicoll J et al (2006) W/O microemulsions for ocular delivery: evaluation of ocular irritation and precorneal retention. J Control Release 111:145–152. https://doi.org/10.1016/j.jconrel.2005.11.020

    Article  CAS  PubMed  Google Scholar 

  23. Elbahwy IA, Lupo N, Ibrahim HM et al (2018) Mucoadhesive self-emulsifying delivery systems for ocular administration of econazole. Int J Pharm 541:72–80. https://doi.org/10.1016/j.ijpharm.2018.02.019

    Article  CAS  PubMed  Google Scholar 

  24. Ding D, Kundukad B, Somasundar A et al (2018) Design of mucoadhesive PLGA microparticles for ocular drug delivery. ACS Appl Bio Mater 1:561–571. https://doi.org/10.1021/acsabm.8b00041

    Article  CAS  PubMed  Google Scholar 

  25. Manchanda S, Sahoo PK (2018) Fabrication and characterization of mucoadhesive topical nanoformulations of dorzolamide HCl for ocular hypertension. J Pharm Investig 48:323–332. https://doi.org/10.1007/s40005-017-0324-x

    Article  CAS  Google Scholar 

  26. Irimia T, Dinu-Pîrvu CE, Ghica MV et al (2018) Chitosan-based in situ gels for ocular delivery of therapeutics: a state-of-the-art review. Mar Drugs 16:1–23. https://doi.org/10.3390/md16100373

    Article  CAS  Google Scholar 

  27. Alhakamy NA, Hosny KM (2019) Nano-vesicular delivery system loaded by bifonazole: preparation, optimization, and assessment of pharmacokinetic and antifungal activity. J Drug Deliv Sci Technol 49:316–322. https://doi.org/10.1016/j.jddst.2018.11.020

    Article  CAS  Google Scholar 

  28. Alayoubi A, Aqueel MS, Cruz CN et al (2018) Application of in vitro lipolysis for the development of oral self-emulsified delivery system of nimodipine. Int J Pharm 553:441–453. https://doi.org/10.1016/j.ijpharm.2018.10.066

    Article  CAS  PubMed  Google Scholar 

  29. Padula C, Telò I, Di Ianni A et al (2018) Microemulsion containing triamcinolone acetonide for buccal administration. Eur J Pharm Sci 115:233–239. https://doi.org/10.1016/j.ejps.2018.01.031

    Article  CAS  PubMed  Google Scholar 

  30. Shah BM, Misra M, Shishoo CJ, Padh H (2014) Nose to brain microemulsion-based drug delivery system of rivastigmine: formulation and ex-vivo characterization. Drug Deliv 7544:1–13. https://doi.org/10.3109/10717544.2013.878857

    Article  CAS  Google Scholar 

  31. Resende AP, Silva B, Braz BS et al (2017) Ex vivo permeation of erythropoietin through porcine conjunctiva, cornea, and sclera. Drug Deliv Transl Res 7:625–631. https://doi.org/10.1007/s13346-017-0399-y

    Article  CAS  PubMed  Google Scholar 

  32. Liu S, Dozois MD, Chang CN et al (2016) Prolonged ocular retention of mucoadhesive nanoparticle eye drop formulation enables treatment of eye diseases using significantly reduced dosage. Mol Pharm 13:2897–2905. https://doi.org/10.1021/acs.molpharmaceut.6b00445

    Article  CAS  PubMed  Google Scholar 

  33. Gagliano C, Papa V, Amato R et al (2018) Measurement of the retention time of different ophthalmic formulations with ultrahigh-resolution optical coherence tomography. Curr Eye Res 43:499–502

    Article  CAS  PubMed  Google Scholar 

  34. Teshima D, Otsubo K, Yoshida T et al (2003) A simple and simultaneous determination of acyclovir and ganciclovir in human plasma by high-performance liquid chromatography. Biomed Chromatogr 17:500–503. https://doi.org/10.1002/bmc.258

    Article  CAS  PubMed  Google Scholar 

  35. Elkasabgy NA (2014) Ocular supersaturated self-nanoemulsifying drug delivery systems (S-SNEDDS) to enhance econazole nitrate bioavailability. Int J Pharm 460:33–44. https://doi.org/10.1016/j.ijpharm.2013.10.044

    Article  CAS  PubMed  Google Scholar 

  36. Trepanier DJ, Ure DR, Foster RT (2018) Development, characterization, and pharmacokinetic evaluation of a crv431 loaded self-microemulsifying drug delivery system. J Pharm Pharm Sci 21:335s–348s. https://doi.org/10.18433/jpps30245

  37. Lim C, Kim Won D, Sim T et al (2016) Preparation and characterization of a lutein loading nanoemulsion system for ophthalmic eye drops. J Drug Deliv Sci Technol 36:168–174. https://doi.org/10.1016/j.jddst.2016.10.009

    Article  CAS  Google Scholar 

  38. Rimple NMJ (2018) Impact of ocular compatible lipoids and castor oil in fabrication of brimonidine tartrate nanoemulsions by 3 3 full factorial design. Recent Pat Inflamm Allergy Drug Discov 12:169–183. https://doi.org/10.2174/1872213x12666180730115225

    Article  CAS  PubMed  Google Scholar 

  39. Mahboobian MM, Seyfoddin A, Aboofazeli R et al (2019) Brinzolamide–loaded nanoemulsions: ex vivo transcorneal permeation, cell viability and ocular irritation tests. Pharm Dev Technol 24:600–606. https://doi.org/10.1080/10837450.2018.1547748

    Article  CAS  PubMed  Google Scholar 

  40. Patel N, Nakrani H, Raval M, Sheth N (2016) Development of loteprednol etabonate-loaded cationic nanoemulsified in-situ ophthalmic gel for sustained delivery and enhanced ocular bioavailability. Drug Deliv 23:3712–3723. https://doi.org/10.1080/10717544.2016.1223225

    Article  CAS  PubMed  Google Scholar 

  41. Anton N, Vandamme TF (2011) Nano-emulsions and micro-emulsions: Clarifications of the critical differences. Pharm Res 28:978–985. https://doi.org/10.1007/s11095-010-0309-1

    Article  CAS  PubMed  Google Scholar 

  42. Bharti SK, Kesavan K (2017) Phase-transition W/O microemulsions for ocular delivery: evaluation of antibacterial activity in the treatment of bacterial keratitis. Ocul Immunol Inflamm 25:463–474. https://doi.org/10.3109/09273948.2016.1139136

    Article  CAS  PubMed  Google Scholar 

  43. Ameeduzzafar A, Ali J, Fazil M et al (2016) Colloidal drug delivery system: amplify the ocular delivery. Drug Deliv 23:710–726. https://doi.org/10.3109/10717544.2014.923065

    Article  CAS  Google Scholar 

  44. De Souza JF, Maia KN, De Oliveira Patrício PS et al (2016) Ocular inserts based on chitosan and brimonidine tartrate: development, characterization and biocompatibility. J Drug Deliv Sci Technol 32:21–30. https://doi.org/10.1016/j.jddst.2016.01.008

    Article  CAS  Google Scholar 

  45. Shah BM, Misra M, Shishoo CJ, Padh H (2015) Nose to brain microemulsion-based drug delivery system of rivastigmine: formulation and ex-vivo characterization. Drug Deliv 22:918–930

    Article  CAS  PubMed  Google Scholar 

  46. Rönkkö S, Vellonen KS, Järvinen K et al (2016) Human corneal cell culture models for drug toxicity studies. Drug Deliv Transl Res 6:660–675. https://doi.org/10.1007/s13346-016-0330-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Silva MM, Calado R, Marto J et al (2017) Chitosan nanoparticles as a mucoadhesive drug delivery system for ocular administration. Mar Drugs 15:1–16. https://doi.org/10.3390/md15120370

    Article  CAS  Google Scholar 

  48. Bhasker S, Kislay R, Rupinder KK, Jagat KR (2015) Evaluation of nanoformulated therapeutics in an ex-vivo bovine corneal irritation model. Toxicol Vitr 29:917–925. https://doi.org/10.1016/j.tiv.2015.01.007

    Article  CAS  Google Scholar 

Download references

Funding

The corresponding author would like to thank, Department of Science and Technology and SERB (INSPIRE Grant No: IFA-LSBM-13 and EMR/2016/007966/HS) for project funds and Ministry of Chemicals and Fertilizer for providing fellowship.

Author information

Authors and Affiliations

Authors

Contributions

MC: Conception, design of the work, acquisition and analysis of data, Initial draft preparation, data compilation. KN: Cell line experiments execution, Initial draft preparation, interpretation of results. NN and YN: Designing experimental studies, interpretation of histological data, technical inputs in drafting of manuscript. DK: Writing- Reviewing and Editing. MM: Concept design, interpretation, revision, and final approval for publication, accuracy integrity, accountability for publication.

Corresponding author

Correspondence to Manju Misra.

Ethics declarations

Competing interests

The authors declare no competing interests.

Conflict of interest

The authors report no conflict of interest. The authors alone are responsible for the content and writing of the paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Choudhari, M., Nayak, K., Nagai, N. et al. Role of mucoadhesive agent in ocular delivery of ganciclovir microemulsion: cytotoxicity evaluation in vitro and ex vivo. Int Ophthalmol 43, 1153–1167 (2023). https://doi.org/10.1007/s10792-022-02514-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10792-022-02514-z

Keywords

Navigation