Skip to main content

Advertisement

Log in

Slit lamp polarized dermoscopy: a cost-effective tool to assess eyelid lesions

  • Original Paper
  • Published:
International Ophthalmology Aims and scope Submit manuscript

Abstract

Purpose

Dermoscopy is a complementary examination of skin lesions, which allows the observation of anatomical features invisible to the naked eye. Its use increases the diagnostic accuracy of skin tumors. The development of polarized dermoscopy allowed the observation of deeper skin structures, without the need of skin contact. The purpose of this study was to present a low-cost prototype through the adaptation of polarized lenses on a slit lamp in order to assess anatomical aspects invisible to conventional biomicroscopy in eyelid lesions.

Methods

Twenty two eyelid lesions were documented using a prototype, compound of two polarizing filters, orthogonal to each other, adapted to a slit lamp with an integrated digital camera. Images of the eyelid lesions were also obtained with non-polarized biomicroscopy and with a portable dermatoscope, and were compared regarding anatomical aspects.

Results

Anatomical structures imperceptible to conventional ophthalmic examination were evidenced using the polarized lenses, demonstrating that this tool can be useful to the ophthalmologist when assessing eyelid lesions. We have obtained high-quality images of the lesions. The slit lamp provided higher magnification, better focus control and easier assessment of eyelid lesions than the portable dermatoscope.

Conclusion

Ophthalmologists already use the slit lamp in their practice. The adaptation of polarized lenses to this device is a cost-effective, fast and non-invasive method that permits to improve the diagnostic accuracy of eyelid lesions, evidencing anatomical structures imperceptible to conventional ophthalmic examination.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

Anonymized participant data will be available upon proper request to the corresponding author.

References

  1. Soyer HP, Argenziano G, Hofmann-Wellenhof R, Zalaudek I (2011) Dermoscopy: The essentials, 2nd edn. Elservier/Saunders, London

    Google Scholar 

  2. Ferreira CMM, BarcauiPineiro·Maceira CJ (2010) Atlas de dermatoscopia, 1st edn. DiLivros, Rio de Janeiro

    Google Scholar 

  3. Lallas A, Errichetti E, Ioannides D (2019) Dermoscopy in general dermatology, 1st edn. CRC Press, Boca Raton

    Google Scholar 

  4. Saphier J (1921) Die Dermatoskopie. II Archiv Für Dermatol Und Syph 132(1):69–86. https://doi.org/10.1007/BF01843881

    Article  Google Scholar 

  5. Soyer HP, Smolle J, Hodl S, Pachernegg H, Kerl H (1989) Surface rnicroscopy: a new approach to the diagnosis of cutaneous pigmented tumors. Amf Dermatopathol 11:1–11

    Article  CAS  Google Scholar 

  6. Pan Y, Gareau DS, Scope A, Rajadhyaksha M, Mullani NA, Marghoob AA (2008) Polarized and Nonpolarized Dermoscopy: the explanation for the observed differences. Arch Dermatol 144(6):828–829. https://doi.org/10.1001/archderm.144.6.828

    Article  PubMed  Google Scholar 

  7. MacKie R (1971) An aid to the preoperative assessment of pigmented lesions of the skin. Br f Dermato 85:232–238

    Article  CAS  Google Scholar 

  8. Micali G, Lacarrubba F (2012) Dermatoscopy in clinical practice: Beyond pigmented lesions, 2nd edn. Informa Healthcare, London

    Google Scholar 

  9. Crotty KA, Menzies SW (2004) Dermoscopy and its role in diagnosing melanocytic lesions: a guide for pathologists. Pathology 36(5):470–477. https://doi.org/10.1080/00313020412331283851

    Article  PubMed  Google Scholar 

  10. Micali G, Lacarrubba F (2018) Dermatoscopy: instrumental update. Dermatol Clin 36:345–348. https://doi.org/10.1016/j.det.2018.05.001

    Article  CAS  PubMed  Google Scholar 

  11. Jakhar D, Grover C (2018) Universal serial bus dermatoscope as an oculoscopy tool. J Am Acad Dermatol 78(6):e139–e140. https://doi.org/10.1016/j.jaad.2018.01.045

    Article  PubMed  Google Scholar 

  12. Celebi ME, Mendonca T, Marques JS (2015) Dermoscopy image analysis, 1st edn. CRC Press, Boca Raton

    Book  Google Scholar 

  13. Celebi ME, Codella N, Halpern A (2019) Dermoscopy image analysis: overview and future directions. IEEE J Biomed Health Inform 23(2):474–478. https://doi.org/10.1109/JBHI.2019.2895803

    Article  PubMed  Google Scholar 

  14. Phillips M, Marsden H, Jaffe W, Matin RN, Wali GN, Greenhalgh J et al (2019) Assessment of accuracy of an artificial intelligence algorithm to detect melanoma in images of skin lesions. JAMA Netw Open 2(10):e1913436. https://doi.org/10.1001/amanetworkopen.2019.13436

    Article  PubMed  PubMed Central  Google Scholar 

  15. Phillips M, Greenhalgh J, Marsden H, Palamaras I (2020) Detection of malignant melanoma using artificial intelligence: an observational study of diagnostic accuracy. Dermatol Pract Concept 10(1):e2020011. https://doi.org/10.5826/dpc.1001a11

    Article  PubMed  Google Scholar 

  16. di Ferrante Ruffano L, Takwoingi Y, Dinnes J, Chuchu N, Bayliss SE, Davenport C et al (2018) Computer-assisted diagnosis techniques (dermoscopy and spectroscopy-based) for diagnosing skin cancer in adults. Cochrane Database Syst Rev 12:cd013186. https://doi.org/10.1002/14651858.cd013186

    Article  Google Scholar 

  17. Chuchu N, Takwoingi Y, Dinnes J, Matin RN, Bassett O, Moreau JF et al (2018) Smartphone applications for triaging adults with skin lesions that are suspicious for melanoma. Cochrane Database Syst Rev 12:CD013192. https://doi.org/10.1002/14651858.cd013192

    Article  PubMed  Google Scholar 

  18. Tran K, Mendel T, Holbrook K, Yates P (2013) Cross polarization kit to enhance slit lamp fundoscopy. Invest Ophthalmol Vis Sci 54(15):1478

    Google Scholar 

  19. Ide T, Yoo SH, O’Brien TP (2009) the use of polarization filters to detect the edge of the descemet’s stripping automated endothelial keratoplasty (DSAEK) Graft. Open Ophthalmol J 3:3–5. https://doi.org/10.2174/1874364100903010003

    Article  PubMed  PubMed Central  Google Scholar 

  20. Barry CJ, Crawford GJ (2002) Dislocated laser in situ keratomileusis flap visualized by cross-polarized filtration. J Cataract Refract Surg 28(8):1478–1480. https://doi.org/10.1016/S0886-3350(02)01235-X

    Article  PubMed  Google Scholar 

  21. O’Sullivan R, Tom LM, Bunya VY, Nyberg WC, Massaro-Giordano M, Daniel E et al (2017) Use of crossed polarizers to enhance images of the eyelids. Cornea 36(5):631–5. https://doi.org/10.1097/ico.0000000000001157

    Article  PubMed Central  Google Scholar 

  22. Cinotti E (2019) Dermoscopy for the diagnosis of eyelid margin tumours. Br J Dermatol 181:397–398. https://doi.org/10.1111/bjd.17743

    Article  CAS  PubMed  Google Scholar 

  23. Williams NM, Navarrete-Dechent C, Marghoob AA, Abarzua-Araya Á, Salerni G, Jaimes N (2021) Differentiating basal cell carcinoma from intradermal nevi along the eyelid margin with dermoscopy: a case series. J Am Acad Dermatol 84(1):173–175. https://doi.org/10.1016/j.jaad.2020.04.059

    Article  PubMed  Google Scholar 

  24. Brennan PF, McNeil AJ, Jing M, Awah A, Finlay DD, Blighe K et al (2019) Quantitative assessment of the conjunctival microcirculation using a smartphone and slit-lamp biomicroscope. Microvasc Res 126:103907. https://doi.org/10.1016/j.mvr.2019.103907

    Article  PubMed  Google Scholar 

  25. Shu X, Wang J, Hu L (2019) A review of functional slit lamp biomicroscopy. Eye Vision 6:15. https://doi.org/10.1186/s40662-019-0140-7

    Article  PubMed  PubMed Central  Google Scholar 

  26. Cinotti E, La Rocca A, Labeille B, Grivet D, Tognetti L, Lambert V et al (2018) Dermoscopy for the diagnosis of conjunctival lesions. Dermatol Clin 36:439–449. https://doi.org/10.1016/j.det.2018.05.011

    Article  CAS  PubMed  Google Scholar 

  27. Kaçar N, Yildirim C, Demirkan N, Bulgu Y (2018) Potential utility of dermoscopy in the examination of ocular pigmentations. Dermatol Pract Concept 8(3):208–213. https://doi.org/10.5826/dpc.0803a12

    Article  PubMed  PubMed Central  Google Scholar 

  28. Kia S, Setayeshi S, Pouladian M, Ardehali SH (2019) Early diagnosis of skin cancer by ultrasound frequency analysis. J Appl Clin Med Phys 20(11):153–68. https://doi.org/10.1002/acm2.12671

    Article  PubMed  PubMed Central  Google Scholar 

  29. Dinnes J, Bamber J, Chuchu N, Bayliss SE, Takwoingi Y, Davenport C et al (2018) High-frequency ultrasound for diagnosing skin cancer in adults. Cochrane Database Syst Rev 12:CD013188. https://doi.org/10.1002/14651858.cd013188

    Article  PubMed  Google Scholar 

  30. Schuetzenberger K, Pfister M, Messner A, Froehlich V, Garhoefer G, Hohenadl C et al (2019) Comparison of optical coherence tomography and high frequency ultrasound imaging in mice for the assessment of skin morphology and intradermal volumes. Sci Rep 9(1):13643. https://doi.org/10.1038/s41598-019-50104-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Rajabi-Estarabadi A, Bittar JM, Zheng C, Nascimento V, Camacho I, Feun LG et al (2019) Optical coherence tomography imaging of melanoma skin cancer. Lasers Med Sci 34(2):411–420. https://doi.org/10.1007/s10103-018-2696-1

    Article  PubMed  Google Scholar 

  32. Jerjes W, Hamdoon Z, Hopper C (2020) Structural validation of facial skin using optical coherence tomography: a descriptive study. Skin Res Technol 26(2):153–162. https://doi.org/10.1111/srt.12791

    Article  PubMed  Google Scholar 

  33. Cinotti E, Singer A, Labeille B, Grivet D, Rubegni P, Douchet C et al (2017) Handheld in vivo reflectance confocal microscopy for the diagnosis of eyelid margin and conjunctival tumors. JAMA Ophthalmol 135(8):845–51. https://doi.org/10.1001/jamaophthalmol.2017.2019

    Article  PubMed  PubMed Central  Google Scholar 

  34. Hu VH, Holland MJ, Cree IA, Pullin J, Weiss HA, Massae P et al (2013) In vivo confocal microscopy and histopathology of the conjunctiva in trachomatous scarring and normal tissue: a systematic comparison. Br J Ophthalmol 97(10):1333–1337. https://doi.org/10.1136/bjophthalmol-2013-303126

    Article  PubMed  Google Scholar 

  35. Freeman EE, Semeere A, Osman H, Peterson G, Rajadhyaksha M, González S et al (2018) Smartphone confocal microscopy for imaging cellular structures in human skin. Biomed Opt Express 9(4):1906–1915. https://doi.org/10.1364/BOE.9.001906

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This study was self-funded by the authors.

Author information

Authors and Affiliations

Authors

Contributions

Fábio Henrique Luiz Leonardo: conception, acquisition, analysis and interpretation of data; drafting the work; final approval. Midori H. Osaki: design of the study; analysis, and interpretation of data; critical revision for important intellectual content; final approval. Débora Fernandes Biazim: acquisition, analysis, and interpretation of data; critical revision for important intellectual content; final approval. Yara Martins Ortigosa Leonardo: acquisition, analysis, and interpretation of data; critical revision for important intellectual content; final approval. Tammy H. Osaki: design of the study; analysis, and interpretation of data; critical revision for important intellectual content; final approval.

Corresponding author

Correspondence to Fábio Henrique Luiz Leonardo.

Ethics declarations

Conflict of interest

The authors have no relevant financial or non-financial interests to disclose.

Ethics approval

The study was approved by the Federal University of S. Paulo Review Board.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Leonardo, F.H.L., Osaki, M.H., Biazim, D.F. et al. Slit lamp polarized dermoscopy: a cost-effective tool to assess eyelid lesions. Int Ophthalmol 43, 1103–1110 (2023). https://doi.org/10.1007/s10792-022-02505-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10792-022-02505-0

Keywords

Navigation