Skip to main content

Advertisement

Log in

Most nonpathological eyes present a small area of hyperreflective Henle’s fiber layer on pupil-centered optical coherence tomography

  • Original Paper
  • Published:
International Ophthalmology Aims and scope Submit manuscript

Abstract

Purpose

Henle’s fiber layer (HFL) is hyporeflective and indistinct on pupil-centered optical coherence tomography (OCT). However, a small area of HFL is also found to be hyperreflective on pupil-centered OCT. This study characterized the hyperreflective HFL of healthy eyes on pupil-centered OCT and investigated the possible physiological and functional relationship of hyperreflective HFL.

Methods

Subjects with different degrees of ametropia underwent a complete ophthalmologic examination, including binocular function by synoptophore and Titmus test, ocular axial length, refractions, and pupil-centered OCT angiography coupled with OCT. The area of hyperreflective HFL was manually plotted and calculated using the Optovue AngioVue system technology. The possible ocular physiological and functional relationship with the area of hyperreflective HFL was investigated.

Results

A total of 111 subjects (222 eyes) without other ocular diseases were enrolled, of which 164 eyes (74%) presented hyperreflective HFL. The average area of hyperreflective HFL was 0.71 ± 0.07 mm2. The area of hyperreflective HFL was significantly related to spherical diopters (P = 0.032). The average binocular area of hyperreflective HFL was 1.38 ± 0.17 mm2. The binocular area of hyperreflective HFL was significantly related to the angle of superposition and far stereoacuity (P = 0.013 and 0.038, respectively).

Conclusion

Most healthy eyes present a small area of hyperreflective HFL, which might be due to alternation of the orientation of some Henle fibers by ametropia during the development of visual function postpartum. The small area of hyperreflective HFL may serve as a marker in identifying the boundary of HFL on OCT.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Huang D, Swanson EA, Lin CP et al (1991) Optical coherence tomography. Science 254:1178–1181. https://doi.org/10.1126/science.1957169

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Tan ACS, Tan GS, Denniston AK et al (2018) An overview of the clinical applications of optical coherence tomography angiography. Eye (Lond) 32:262–286. https://doi.org/10.1038/eye.2017.181

    Article  CAS  Google Scholar 

  3. Cuenca N, Ortuño-Lizarán I, Sánchez-Sáez X et al (2020) Interpretation of OCT and OCTA images from a histological approach: clinical and experimental implications. Prog Retin Eye Res 77:100828. https://doi.org/10.1016/j.preteyeres.2019.100828

    Article  CAS  PubMed  Google Scholar 

  4. Spaide RF, Fujimoto JG, Waheed NK, Sadda SR, Staurenghi G (2018) Optical coherence tomography angiography. Prog Retin Eye Res 64:1–55. https://doi.org/10.1016/j.preteyeres.2017.11.003

    Article  PubMed  Google Scholar 

  5. Land MF (1972) The physics and biology of animal reflectors. Prog Biophys Mol Biol 24:75–106. https://doi.org/10.1016/0079-6107(72)90004-1

    Article  CAS  PubMed  Google Scholar 

  6. Bringmann A, Syrbe S, Görner K et al (2018) The primate fovea: structure, function and development. Prog Retin Eye Res 66:49–84. https://doi.org/10.1016/j.preteyeres.2018.03.006

    Article  PubMed  Google Scholar 

  7. Lujan BJ, Roorda A, Knighton RW, Carroll J (2011) Revealing Henle’s fiber layer using spectral domain optical coherence tomography. Invest Ophthalmol Vis Sci 52:1486–1492. https://doi.org/10.1167/iovs.10-5946

    Article  PubMed  PubMed Central  Google Scholar 

  8. Ouyang Y, Walsh AC, Keane PA, Heussen FM, Pappuru RK, Sadda SR (2013) Different phenotypes of the appearance of the outer plexiform layer on optical coherence tomography. Graefe’s Arch Clin Exp Ophthalmol = Albrecht von Graefes Archiv fur Klinische und Experimentelle Ophthalmologie 251:2311–2317. https://doi.org/10.1007/s00417-013-2308-5

    Article  Google Scholar 

  9. Sampson DM, Gong P, An D et al (2017) Axial length variation impacts on superficial retinal vessel density and foveal avascular zone area measurements using optical coherence tomography angiography. Invest Ophthalmol Vis Sci 58:3065–3072. https://doi.org/10.1167/iovs.17-21551

    Article  PubMed  Google Scholar 

  10. Vesely P, Synek S (2013) Simple binocular vision examination on synoptophore determination of normative database of healthy adult subjects examination of binocular vision on synoptophore. Coll Antropol 37(Suppl 1):145–151

    PubMed  Google Scholar 

  11. Okuda FC, Apt L, Wanter BS (1977) Evaluation of the TNO random-dot stereogram test. Am Orthopt J 27:124–130

    Article  CAS  PubMed  Google Scholar 

  12. Broadbent H, Westall C (1990) An evaluation of techniques for measuring stereopsis in infants and young children. Ophthal Physiol Opt J Br Coll Ophthal Opt (Optom) 10:3–7

    Article  CAS  Google Scholar 

  13. Dieter KC, Sy JL, Blake R (2017) Individual differences in sensory eye dominance reflected in the dynamics of binocular rivalry. Vision Res 141:40–50. https://doi.org/10.1016/j.visres.2016.09.014

    Article  PubMed  Google Scholar 

  14. Cha O, Blake R (2019) Evidence for neural rhythms embedded within binocular rivalry. Proc Natl Acad Sci USA 116:14811–14812. https://doi.org/10.1073/pnas.1905174116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Curcio CA, Messinger JD, Sloan KR, Mitra A, McGwin G, Spaide RF (2011) Human chorioretinal layer thicknesses measured in macula-wide, high-resolution histologic sections. Invest Ophthalmol Vis Sci 52:3943–3954. https://doi.org/10.1167/iovs.10-6377

    Article  PubMed  PubMed Central  Google Scholar 

  16. Staurenghi G, Sadda S, Chakravarthy U, Spaide RF (2014) Proposed lexicon for anatomic landmarks in normal posterior segment spectral-domain optical coherence tomography: the IN•OCT consensus. Ophthalmology 121:1572–1578. https://doi.org/10.1016/j.ophtha.2014.02.023

    Article  PubMed  Google Scholar 

  17. Curcio CA, Allen KA (1990) Topography of ganglion cells in human retina. J Comp Neurol 300:5–25. https://doi.org/10.1002/cne.903000103

    Article  CAS  PubMed  Google Scholar 

  18. Dubis AM, Hansen BR, Cooper RF, Beringer J, Dubra A, Carroll J (2012) Relationship between the foveal avascular zone and foveal pit morphology. Invest Ophthalmol Vis Sci 53:1628–1636. https://doi.org/10.1167/iovs.11-8488

    Article  PubMed  PubMed Central  Google Scholar 

  19. Weale RA (1966) Why does the human retina possess a fovea? Nature 212:255–256. https://doi.org/10.1038/212255a0

    Article  CAS  PubMed  Google Scholar 

  20. Agte S, Junek S, Matthias S et al (2011) Müller glial cell-provided cellular light guidance through the vital guinea-pig retina. Biophys J 101:2611–2619. https://doi.org/10.1016/j.bpj.2011.09.062

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Franze K, Grosche J, Skatchkov SN et al (2007) Müller cells are living optical fibers in the vertebrate retina. Proc Natl Acad Sci USA 104:8287–8292. https://doi.org/10.1073/pnas.0611180104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Hendrickson AE, Yuodelis C (1984) The morphological development of the human fovea. Ophthalmology 91:603–612. https://doi.org/10.1016/s0161-6420(84)34247-6

    Article  CAS  PubMed  Google Scholar 

  23. Yuodelis C, Hendrickson A (1986) A qualitative and quantitative analysis of the human fovea during development. Vis Res 26:847–855. https://doi.org/10.1016/0042-6989(86)90143-4

    Article  CAS  PubMed  Google Scholar 

  24. Gong D, Zou X, Zhang X, Yu W, Qu Y, Dong F (2016) The influence of age and central foveal thickness on foveal zone size in healthy people. Ophthalmic Surg Lasers Imag Retina 47:142–148. https://doi.org/10.3928/23258160-20160126-07

    Article  Google Scholar 

  25. Akula JD, Arellano IA, Swanson EA et al (2020) The fovea in retinopathy of prematurity. Invest Ophthalmol Vis Sci 61(11):28. https://doi.org/10.1167/iovs.61.11.28

    Article  PubMed  PubMed Central  Google Scholar 

  26. Murcia-Belmonte V, Erskine L (2019) Wiring the binocular visual pathways. Int J Mol Sci 20(13):3282. https://doi.org/10.3390/ijms20133282

    Article  CAS  PubMed Central  Google Scholar 

  27. Banihani SM (2015) Loss of binocular vision as direct cause for misrouting of temporal retinal fibers in albinism. Med Hypotheses 85:458–462. https://doi.org/10.1016/j.mehy.2015.06.028

    Article  PubMed  Google Scholar 

  28. Sun YJ, Espinosa JS, Hoseini MS, Stryker MP (2019) Experience-dependent structural plasticity at pre- and postsynaptic sites of layer 2/3 cells in developing visual cortex. Proc Natl Acad Sci USA 116:21812–21820. https://doi.org/10.1073/pnas.1914661116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Watroba L, Buser P, Milleret C (2001) Impairment of binocular vision in the adult cat induces plastic changes in the callosal cortical map. Eur J Neurosci 14:1021–1029. https://doi.org/10.1046/j.0953-816x.2001.01720.x

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This study was supported by the Department of Ophthalmology in the First Hospital Affiliated to Soochow University, Suzhou, Jiangsu, China.

Funding

Not applicable.

Author information

Authors and Affiliations

Authors

Contributions

XL drafted the article and revised it critically; QZ acquired the data and interpreted of data; PL reviewed the manuscript and gave final approval of the version to be submitted; DG gave the conception and designed the study; and JY conceived and designed the analysis.

Corresponding author

Correspondence to Jingyan Yao.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Ethical approval

All participants and parents of participants under 16 years were informed the purpose of the project and gave their written consent to be recruited to this study, which was approved by the ethics committee of the First Hospital Affiliated to Soochow University, Soochow, China. The performance of this study was followed the tenets of the Declaration of Helsinki.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, X., Zhu, Q., Lu, P. et al. Most nonpathological eyes present a small area of hyperreflective Henle’s fiber layer on pupil-centered optical coherence tomography. Int Ophthalmol 42, 3941–3950 (2022). https://doi.org/10.1007/s10792-022-02378-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10792-022-02378-3

Keywords

Navigation