Skip to main content

Advertisement

Log in

Long-term evaluation of posterior corneal surface parameters after accelerated corneal cross-linking with a comparison with uncross-linked keratoconic eyes

  • Original Paper
  • Published:
International Ophthalmology Aims and scope Submit manuscript

Abstract

Purpose

To evaluate the 36 months changes in posterior corneal surface parameters in keratoconic eyes after accelerated corneal cross-linking and to compare the data with uncross-linked progressive and non-progressive keratoconic eyes.

Methods

Thirty five cross-linked, 30 uncross-linked progressive, and 30 uncross-linked non-progressive keratoconic eyes were included. Maximum keratometry (Kmax), thinnest pachymetry, minimum radius of curvature back (Rminback), asphericity back, posterior elevation and corneal densitometry, back corneal higher order aberrations (HOAs), back surface deviation (Db), final D, posterior radius of curvature (PRC) and ‘B’ unit values were recorded at baseline and at the 12, 24, 36 months follow-up. Data were analyzed with repeated measures ANOVA and paired t-tests.

Results

Kmax and thinnest pachymetry were significantly changed in the cross-linked and progressive uncross-linked groups. Rminback, asphericity back, and HOAs did not change in either group. Total posterior corneal densitometry improved; posterior elevation, Db and B unit worsened in the cross-linked group and did not change in the uncross-linked groups. PRC and final D worsened in the cross-linked and progressive uncross-linked groups, and did not change in the non-progressive group.

Conclusion

Despite a decreased Kmax, the posterior corneal surface parameters, posterior elevation values were determined to have significantly worsened in the cross-linked group and this increase was higher than in progressive uncross-linked eyes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data availability

Due to the nature of this research, participants of this study did not agree for their data to be shared publicly, so supporting data is not available.

References

  1. Jeyabalan N, Shetty R, Ghosh A, Anandula VR, Ghosh AS, Kumaramanickavel G (2013) Genetic and genomic perspective to understand the molecular pathogenesis of keratoconus. Indian J Ophthalmol 61(8):384–388. https://doi.org/10.4103/0301-4738.116055

    Article  PubMed  PubMed Central  Google Scholar 

  2. Suri K, Hammersmith KM, Nagra PK (2012) Corneal collagen cross-linking: ectasia and beyond. Curr Opin Ophthalmol 23(4):280–287. https://doi.org/10.1097/ICU.0b013e328354865e

    Article  PubMed  Google Scholar 

  3. Wollensak G, Spoerl E, Seiler T (2003) Riboflavin/ultraviolet-a-induced collagen crosslinking for the treatment of keratoconus. Am J Ophthalmol 135(5):620–627. https://doi.org/10.1016/s0002-9394(02)02220-1

    Article  CAS  PubMed  Google Scholar 

  4. Wen D, Li Q, Song B, Tu R, Wang Q, O’Brart D, McAlinden C, Huang J (2018) Comparison of standard versus accelerated corneal collagen cross-linking for keratoconus: a meta-analysis. Inv Ophthalmol Vis Sci 59(10):3920–3931. https://doi.org/10.1167/iovs.18-24656

    Article  CAS  Google Scholar 

  5. Kobashi H, Tsubota K (2020) Accelerated versus standard corneal cross-linking for progressive keratoconus: a meta-analysis of randomized controlled trials. Cornea 39(2):172–180. https://doi.org/10.1097/ICO.0000000000002092

    Article  PubMed  Google Scholar 

  6. Hassan Z, Modis L, Szalai E, Berta A, Nemeth G (2014) Scheimpflug imaged corneal changes on anterior and posterior surfaces after collagen cross-linking. Int J Ophthalmol 7(2):313–316. https://doi.org/10.3980/j.issn.2222-3959.2014.02.21

    Article  PubMed  PubMed Central  Google Scholar 

  7. Steinberg J, Ahmadiyar M, Rost A, Frings A, Filev F, Katz T, Linke SJ (2014) Anterior and posterior corneal changes after crosslinking for keratoconus. Optom Vis Sci 91(2):178–186. https://doi.org/10.1097/OPX.0000000000000141

    Article  PubMed  Google Scholar 

  8. Safarzadeh M, Nasiri N, Doostdar A, Kamali M (2016) Comparative study of changes of corneal curvatures and uncorrected distance visual acuity prior to and after corneal collagen crosslinking: 1-year results. Taiwan J Ophthalmol 6(3):127–130. https://doi.org/10.1016/j.tjo.2016.06.003

    Article  PubMed  PubMed Central  Google Scholar 

  9. Gomes JA, Tan D, Rapuano CJ, Belin MW, Ambrósio R Jr, Guell JL, Malecaze F, Nishida K, Sangwan VS (2015) Global consensus on keratoconus and ectatic diseases. Cornea 34(4):359–369. https://doi.org/10.1097/ICO.0000000000000408

    Article  PubMed  Google Scholar 

  10. Garner LF, Owens H, Yap MK, Frith MJ, Kinnear RF (1997) Radius of curvature of the posterior surface of the cornea. Optom Vis Sci 74(7):496–498. https://doi.org/10.1097/00006324-199707000-00016

    Article  CAS  PubMed  Google Scholar 

  11. Royston JM, Dunne MC, Barnes DA (1990) Measurement of posterior corneal surface toricity. Optom Vis Sci 67(10):757–763. https://doi.org/10.1097/00006324-199010000-00002

    Article  CAS  PubMed  Google Scholar 

  12. Maldonado MJ, Nieto JC, Díez-Cuenca M, Piñero DP (2006) Repeatability and reproducibility of posterior corneal curvature measurements by combined scanning-slit and placido-disc topography after LASIK. Ophthalmology 113(11):1918–1926. https://doi.org/10.1016/j.ophtha.2006.05.053

    Article  PubMed  Google Scholar 

  13. Nawa Y, Masuda K, Ueda T, Hara Y, Uozato H (2005) Evaluation of apparent ectasia of the posterior surface of the cornea after keratorefractive surgery. J Cataract Refract Surg 31(3):571–573. https://doi.org/10.1016/j.jcrs.2004.05.050

    Article  PubMed  Google Scholar 

  14. Ciolino JB, Belin MW (2006) Changes in the posterior cornea after laser in situ keratomileusis and photorefractive keratectomy. J Cataract Refract Surg 32(9):1426–1431. https://doi.org/10.1016/j.jcrs.2006.03.037

    Article  PubMed  Google Scholar 

  15. Labiris G, Giarmoukakis A, Sideroudi H, Bougatsou P, Lazaridis I, Kozobolis VP (2012) Variability in Scheimpflug image-derived posterior elevation measurements in keratoconus and collagen-crosslinked corneas. J Cataract Refract Surg 38(9):1616–1625. https://doi.org/10.1016/j.jcrs.2012.04.039

    Article  PubMed  Google Scholar 

  16. Kırgız A, Atalay K, Çabuk KŞ, Kaldırım H, Taşkapılı M (2016) Factors affecting visual acuity after accelerated crosslinking in patients with progressive keratoconus. Arq Bras Oftalmol 79(3):151–154. https://doi.org/10.5935/0004-2749.20160046

    Article  PubMed  Google Scholar 

  17. Badawi AE (2017) Accelerated corneal collagen cross-linking in pediatric keratoconus: one year study. Saudi J Ophthalmol 31(1):11–18. https://doi.org/10.1016/j.sjopt.2017.01.002

    Article  PubMed  PubMed Central  Google Scholar 

  18. Omar I, Zein HA (2019) Accelerated epithelium-off corneal collagen cross-linking for Keratoconus: 12-month results. Clin Ophthalmol 13:2385–2394. https://doi.org/10.2147/OPTH.S232118

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Kosekahya P, Koc M, Yalcinsoy KO, Kocabas DO, Toker MI (2020) Comparative evaluation of central corneal thickness in cross-linked keratoconic eyes. Cornea 39(9):1080–1085. https://doi.org/10.1097/ICO.0000000000002339

    Article  PubMed  Google Scholar 

  20. Nakagawa T, Maeda N, Kosaki R, Hori Y, Inoue T, Saika M, Mihashi T, Fujikado T, Tano Y (2009) Higher-order aberrations due to the posterior corneal surface in patients with keratoconus. Invest Ophthalmol Vis Sci 50(6):2660–2665. https://doi.org/10.1167/iovs.08-2754

    Article  PubMed  Google Scholar 

  21. Iselin KC, Baenninger PB, Bachmann LM, Bochmann F, Thiel MA, Kaufmann C (2020) Changes in higher order aberrations after central corneal regularization: a comparative two-year analysis of a semi-automated topography-guided photorefractive keratectomy combined with corneal cross-linking. Eye Vis 7:10. https://doi.org/10.1186/s40662-020-00179-2

    Article  Google Scholar 

  22. Greenstein SA, Fry KL, Hersh MJ, Hersh PS (2012) Higher-order aberrations after corneal collagen crosslinking for keratoconus and corneal ectasia. J Cataract Refract Surg 38(2):292–302. https://doi.org/10.1016/j.jcrs.2011.08.041

    Article  PubMed  Google Scholar 

  23. Greenstein SA, Fry KL, Bhatt J, Hersh PS (2010) Natural history of corneal haze after collagen crosslinking for keratoconus and corneal ectasia: Scheimpflug and biomicroscopic analysis. J Cataract Refract Surg 36(12):2105–2114. https://doi.org/10.1016/j.jcrs.2010.06.067

    Article  PubMed  Google Scholar 

  24. Alnawaiseh M, Rosentreter A, Böhm MR, Eveslage M, Eter N, Zumhagen L (2015) Accelerated (18 mW/cm2) corneal collagen cross-linking for progressive keratoconus. Cornea 34(11):1427–1431. https://doi.org/10.1097/ICO.0000000000000578

    Article  PubMed  Google Scholar 

  25. Hashemi H, Mohebbi M, Asgari S (2020) Standard and accelerated corneal cross-linking long-term results: a randomized clinical trial. Eur J Ophthalmol 30(4):650–657. https://doi.org/10.1177/1120672119839927

    Article  PubMed  Google Scholar 

  26. Tian M, Jian W, Zhang X, Sun L, Zhou X (2020) Three-year follow-up of accelerated transepithelial corneal cross-linking for progressive paediatric keratoconus. Br J Ophthalmol 104(11):1608–1612. https://doi.org/10.1136/bjophthalmol-2019-315260

    Article  PubMed  Google Scholar 

  27. Franko Zeitz P, Kohlhaas M (2012) Einfluss der hornhauttransparenz auf die qualität von topografien [Influence of corneal transparency on the quality of topographies]. Klin Monbl Augenheilkd 229(112):1227–1232. https://doi.org/10.1055/s-0032-1327956

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The study was reviewed by a native English speaker, Dr. Caroline J. Walker, Ph. D.

Funding

This research received no specific grant from any funding agency in the public, commercial, or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pinar Kosekahya.

Ethics declarations

Conflict of interest

The authors report no conflict of interest. The authors alone are responsible for the content and writing of the paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kosekahya, P., Turkay, M., Camgoz, E.B. et al. Long-term evaluation of posterior corneal surface parameters after accelerated corneal cross-linking with a comparison with uncross-linked keratoconic eyes. Int Ophthalmol 42, 3725–3738 (2022). https://doi.org/10.1007/s10792-022-02370-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10792-022-02370-x

Keywords

Navigation