Skip to main content

Advertisement

Log in

Optical coherence tomography angiography in healthy children: normative data and age–related changes in microvascular structure of the optic disk and macula

  • Original Paper
  • Published:
International Ophthalmology Aims and scope Submit manuscript

Abstract

Purpose

To determine normative data and reference ranges according to age groups by measuring the foveal avascular zone (FAZ), superficial capillary plexus vascular density (SCP-VD), deep capillary plexus vascular density (DVP-VD), radial peripapillary capillary plexus vessel density (RPC-VD), and peripapillary retinal nerve fiber layer (ppRNFL) in healthy children and to determine the age and sex-related changes of these values.

Methods

This prospective study included data from 370 eyes of 370 healthy children (202 girls, 168 boys) aged 7–18 years. Participants were divided into four groups according to their age. Optical coherence tomography angiography (OCTA) measurements were taken using AngioVue (Avanti; Optivue).

Results

No statistically significant difference was observed in terms of FAZ, SCP-VD, DCP-VD, RPC-VD, and ppRNFL thickness values according to the age groups (except the RPC-VD superior) (p > 0.05 for all). VDs in all deep parafoveal regions in groups 1 and 2 were higher in girls. While FAZ values were higher in girls in all age groups (statistically significant in groups 1, 3, and 4), ad SPD and DPD values were higher in boys in all age groups (statistically significant in group 1 and 2 for SPD, and group 1 and 3 for DPD).

Conclusions

We report normal reference ranges for macula and disk vessel density and ppRNFL parameters in healthy children aged 7–18 years using OCTA. These normative values could be useful in diagnosing retina and optic disk disease early in childhood.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig.4

Similar content being viewed by others

References

  1. Hautz W, Gołębiewska J, Kocyła-Karczmarewicz B (2017) Optical coherence tomography and optical coherence tomography angiography in monitoring Coats’ disease. J Ophthalmol 2017:7849243. https://doi.org/10.1155/2017/7849243

    Article  PubMed  PubMed Central  Google Scholar 

  2. Rezar-Dreindl S, Eibenberger K, Told R et al (2021) Retinal vessel architecture in retinopathy of prematurity and healthy controls using swept-source optical coherence tomography angiography. Acta Ophthalmol 99(2):e232–e239. https://doi.org/10.1111/aos.14557

    Article  PubMed  Google Scholar 

  3. Niestrata-Ortiz M, Fichna P, Stankiewicz W et al (2019) Enlargement of the foveal avascular zone detected by optical coherence tomography angiography in diabetic children without diabetic retinopathy. Graefes Arch Clin Exp Ophthalmol 257(4):689–697. https://doi.org/10.1007/s00417-019-04264-8

    Article  CAS  PubMed  Google Scholar 

  4. Ong SS, Hsu ST, Grewal D et al (2020) Appearance of pediatric choroidal neovascular membranes on optical coherence tomography angiography. Graefes Arch Clin Exp Ophthalmol 258(1):89–98. https://doi.org/10.1007/s00417-019-04535-4

    Article  CAS  PubMed  Google Scholar 

  5. Johnson RN, Fu AD, McDonald HR, Jumper JM, et al. 2012 Fluorescein angiography: Basic principles and ınterpretation. In Retina Fifth Edition; (Vol. 1, pp. 2–50.e1). Elsevier Inc. https://doi.org/10.1016/B978-1-4557-0737-9.00001-1

  6. Mendis KR, Balaratnasingam C, Yu P et al (2010) Correlation of histologic and clinical images to determine the diagnostic value of fluorescein angiography for studying capillary detail. Invest Ophthalmol Vis Sci 51:5864–5859

    Article  Google Scholar 

  7. Jia Y, Bailey ST, Wilson DJ, et al. 2014 Quantitative optical coherence tomography angiography of choroidal neovascularization in age-related macular degeneration. Ophthalmology 121(7):1435–1444

  8. Couturier A, Mané V, Bonnin S et al (2015) Capillary plexus anomalies in diabetic retinopathy on optical coherence tomography angiography. Retina 35(11):2384–2391. https://doi.org/10.1097/IAE.0000000000000859

    Article  PubMed  Google Scholar 

  9. Coscas F, Glacet-Bernard A, Miere A, et al. Optical coherence tomography angiography in retinal vein occlusion: Evaluation of superficial and deep capillary plexa. Am J Ophthalmol. 2016 Jan;161:160–71.e1–2. doi: https://doi.org/10.1016/j.ajo.2015.10.008.

  10. Lei J, Durbin MK, Shi Y et al (2017) Repeatability and reproducibility of superficial macular retinal vessel density measurements using optical coherence tomography angiography en face images. JAMA Ophthalmol 135(10):1092–1098. https://doi.org/10.1001/jamaophthalmol.2017.3431

    Article  PubMed  PubMed Central  Google Scholar 

  11. Rodríguez FJ, Staurenghi G, Gale R; Vision Academy Steering Committee 2018 The role of OCT-A in retinal disease management. Graefes Arch Clin Exp Ophthalmol. 256(11):2019–2026. doi: https://doi.org/10.1007/s00417-018-4109-3.

  12. Lim CW, Cheng J, Tay ELT et al (2018) Optical coherence tomography angiography of the macula and optic nerve head: microvascular density and test-retest repeatability in normal subjects. BMC Ophthalmol 18(1):315. https://doi.org/10.1186/s12886-018-0976-y

    Article  PubMed  PubMed Central  Google Scholar 

  13. Falavarjani KG, Shenazandi H, Naseri D et al (2018) Foveal avascular zone and vessel density in healthy subjects: An optical coherence tomography angiography study. J Ophthalmic Vis Res 13(3):260–265. https://doi.org/10.4103/jovr.jovr_173_17

    Article  PubMed  PubMed Central  Google Scholar 

  14. Lee MW, Nam KY, Lim HB et al (2020) Long-term repeatability of optical coherence tomography angiography parameters in healthy eyes. Acta Ophthalmol 98(1):e36–e42. https://doi.org/10.1111/aos.14203

    Article  PubMed  Google Scholar 

  15. Yilmaz H, Karakurt Y, Icel E et al (2019) Normative data assessment of vessel density and foveal avascular zone metrics using AngioScan software. Curr Eye Res 44(12):1345–1352. https://doi.org/10.1080/02713683.2019.1639769

    Article  PubMed  Google Scholar 

  16. Zhang Y, Zhang B, Fan M et al (2020) The vascular densities of the macula and optic disc in normal eyes from children by optical coherence tomography angiography. Graefes Arch Clin Exp Ophthalmol 258(2):437–444. https://doi.org/10.1007/s00417-019-04466-0

    Article  PubMed  Google Scholar 

  17. Kiziltoprak H, Tekin K, Cevik S et al (2020) Normative data assessment of peripapillary and macular vessel density and foveal avascular zone metrics using optical coherence tomography angiography in children. J Pediatr Ophthalmol Strabismus 57(6):388–398. https://doi.org/10.3928/01913913-20200903-01

    Article  PubMed  Google Scholar 

  18. Borrelli E, Lonngi M, Balasubramanian S et al (2019) macular microvascular networks in healthy pediatric subjects. Retina 39(6):1216–1224. https://doi.org/10.1097/IAE.0000000000002123

    Article  PubMed  Google Scholar 

  19. İçel E, Yılmaz H, Uçak T et al (2020) Evaluation of the optic disc and macula in healthy children using optical coherence tomography angiography. Turk J Ophthalmol 50(4):228–233

    Article  Google Scholar 

  20. The CDC BMI-for-age growth charts are available at: https://www.cdc.gov/healthyweight/assessing/bmi/childrens_bmi/about_childrens_bmi.html

  21. Takagi M, Maruko I, Yamaguchi A et al (2019) Foveal abnormalities determined by optical coherence tomography angiography in children with history of retinopathy of prematurity. Eye (Lond) 33(12):1890–1896. https://doi.org/10.1038/s41433-019-0500-5

    Article  Google Scholar 

  22. Takase N, Nozaki M, Kato A et al (2015) Enlargement of foveal avascular zone in diabetic eyes evaluated by en face optical coherence angiography. Retina 35(11):2377–2383. https://doi.org/10.1097/IAE.0000000000000849

    Article  PubMed  Google Scholar 

  23. Gołębiewska J, Biała-Gosek K, Czeszyk A et al (2019) Optical coherence tomography angiography of superficial retinal vessel density and foveal avascular zone in myopic children. PLoS ONE 14(7):e0219785. https://doi.org/10.1371/journal.pone.0219785

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Zhang J, Tang FY, Cheung C et al (2021) Different effect of media opacity on automated and manual measurement of foveal avascular zone of optical coherence tomography angiographies. Br J Ophthalmol 105(6):812–818. https://doi.org/10.1136/bjophthalmol-2019-315780

    Article  PubMed  Google Scholar 

  25. Zhang J, Tang FY, Cheung CY et al (2020) Different Effect of Media Opacity on Vessel Density Measured by Different Optical Coherence Tomography Angiography Algorithms. Transl Vis Sci Technol 9(8):19. https://doi.org/10.1167/tvst.9.8.19

    Article  PubMed  PubMed Central  Google Scholar 

  26. Yanni SE, Wang J, Cheng CS et al (2013) Normative reference ranges for the retinal nerve fiber layer, macula, and retinal layer thicknesses in children. Am J Ophthalmol 155(2):354-360.e1. https://doi.org/10.1016/j.ajo.2012.08.010

    Article  PubMed  Google Scholar 

  27. Erkan Turan K, Taylan Şekeroğlu H, Baytaroğlu, et al (2018) Normative values for optical coherence tomography parameters in healthy children and interexaminer agreement for choroidal thickness measurements. Arquıvos Brasıleıros de Oftalmologıa. https://doi.org/10.5935/0004-2749.20180003

    Article  Google Scholar 

  28. Al-Haddad C, Barikian A, Jaroudi M et al (2014) Spectral-domain optical coherence tomography in children: normative data and biometric correlations. BMC Ophthalmol 14:53. https://doi.org/10.1186/1471-2415-14-53

    Article  PubMed  PubMed Central  Google Scholar 

  29. Krumova S, Sivkova N, Marinov V et al (2020) Normal reference ranges of optical coherence tomography parameters in children. Folia Med (Plovdiv). 62(2):338–344. https://doi.org/10.3897/folmed.62.e46678

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This work was done at University of Health Sciences Adana City Training and Research Hospital.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tuğba Kurumoğlu İncekalan.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this article. The authors (all) meet all four criteria of the ICMJE.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kurumoğlu İncekalan, T., Naz Şimdivar, G.H., Çelik, Ü. et al. Optical coherence tomography angiography in healthy children: normative data and age–related changes in microvascular structure of the optic disk and macula. Int Ophthalmol 42, 2373–2383 (2022). https://doi.org/10.1007/s10792-022-02236-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10792-022-02236-2

Keywords

Navigation