Skip to main content

Advertisement

Log in

Understanding the role of microperimetry in glaucoma

  • Review
  • Published:
International Ophthalmology Aims and scope Submit manuscript

Abstract

Purpose

The present narrative review attempts to provide an overview on the use of microperimetry or fundus-driven perimetry in glaucoma, considering the clinical use, the different strategies and limits compared to standard automated perimetry.

Methods

An electronic database (PubMed and Medline) search was performed of articles of any type published in the English language between 1998 and 2020 with a combination of the following terms: microperimetry, glaucoma, primary open-angle chronic glaucoma, visual field, Humphrey visual field, fundus automated perimetry.

Results

All the original articles, case reports, and short series analyzed were included in the present review, offering an excursus on the strengths and limitations characterizing the use of microperimetry in glaucomatous patients. The characteristics of a recently introduced fundus-driven perimetry Compass (CMP; Centervue, Padua, Italy) were also included.

Conclusion

Although there remain several contradictions regarding routine use of microperimetry and the restricted research on this topic limits our ability to draw firm conclusions, microperimetry may be preferable in cases of localized retinal nerve fiber layer defects in patients with primary open-angle glaucoma and normal visual field. However, standard automated perimetry remains the gold standard for monitoring glaucoma, especially in patients with diffuse retinal nerve fiber layer impairment and visual field defects. The newly introduced Compass device can potentially provide a more accurate structural–functional evaluation than standard automated perimetry and can therefore produce superior testing reliability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Scuderi G, Fragiotta S, Scuderi L, Iodice CM, Perdicchi A (2020) Ganglion cell complex analysis in glaucoma patients: what can it tell us? Eye Brain 12:33–44. https://doi.org/10.2147/EB.S226319

    Article  PubMed  PubMed Central  Google Scholar 

  2. Perdicchi A, Abdolrahimzadeh S, Cutini A, Ciarnella A, Scuderi GL (2016) Evaluation of the progression of visual field damage in patients suffering from early manifest glaucoma. Clin Ophthalmol 10:1647–1651. https://doi.org/10.2147/OPTH.S113995

    Article  PubMed  PubMed Central  Google Scholar 

  3. Scuderi GL, Cesareo M, Perdicchi A, Recupero SM (2008) Standard automated perimetry and algorithms for monitoring glaucoma progression. Prog Brain Res 173:77–99. https://doi.org/10.1016/S0079-6123(08)01107-2

    Article  CAS  PubMed  Google Scholar 

  4. Delgado MF, Nguyen NT, Cox TA, Singh K, Lee DA, Dueker DK, Fechtner RD, Juzych MS, Lin SC, Netland PA, Pastor SA, Schuman JS, Samples JR, American Academy of Ophthalmology. Ophthalmic Technology Assessment Committee - Glaucoma P (2002) Automated perimetry: a report by the American Academy of Ophthalmology. Ophthalmology 109: 2362-2374

  5. Hood DC, Raza AS, de Moraes CG, Johnson CA, Liebmann JM, Ritch R (2012) The nature of macular damage in glaucoma as revealed by averaging optical coherence tomography data. Transl Vis Sci Technol 1:3. https://doi.org/10.1167/tvst.1.1.3

    Article  PubMed  PubMed Central  Google Scholar 

  6. Hood DC, Raza AS, de Moraes CG, Liebmann JM, Ritch R (2013) Glaucomatous damage of the macula. Prog Retin Eye Res 32:1–21. https://doi.org/10.1016/j.preteyeres.2012.08.003

    Article  PubMed  Google Scholar 

  7. Hood DC, Raza AS, de Moraes CG, Odel JG, Greenstein VC, Liebmann JM, Ritch R (2011) Initial arcuate defects within the central 10 degrees in glaucoma. Invest Ophthalmol Vis Sci 52:940–946. https://doi.org/10.1167/iovs.10-5803

    Article  PubMed  PubMed Central  Google Scholar 

  8. Newkirk MR, Gardiner SK, Demirel S, Johnson CA (2006) Assessment of false positives with the humphrey field analyzer II perimeter with the SITA algorithm. Invest Ophthalmol Vis Sci 47:4632–4637. https://doi.org/10.1167/iovs.05-1598

    Article  PubMed  Google Scholar 

  9. Hudson C, Wild JM, O’Neill EC (1994) Fatigue effects during a single session of automated static threshold perimetry. Invest Ophthalmol Vis Sci 35:268–280

    CAS  PubMed  Google Scholar 

  10. Marra G, Flammer J (1991) The learning and fatigue effect in automated perimetry. Graefes Arch Clin Exp Ophthalmol 229:501–504. https://doi.org/10.1007/bf00203309

    Article  CAS  PubMed  Google Scholar 

  11. Ishiyama Y, Murata H, Mayama C, Asaoka R (2014) An objective evaluation of gaze tracking in Humphrey perimetry and the relation with the reproducibility of visual fields: a pilot study in glaucoma. Invest Ophthalmol Vis Sci 55:8149–8152. https://doi.org/10.1167/iovs.14-15541

    Article  PubMed  Google Scholar 

  12. Ishiyama Y, Murata H, Asaoka R (2015) The usefulness of gaze tracking as an index of visual field reliability in glaucoma patients. Invest Ophthalmol Vis Sci 56:6233–6236. https://doi.org/10.1167/iovs.15-17661

    Article  PubMed  Google Scholar 

  13. Goukon H, Hirasawa K, Kasahara M, Matsumura K, Shoji N (2019) Comparison of humphrey field analyzer and imo visual field test results in patients with glaucoma and pseudo-fixation loss. PLoS ONE 14:e0224711. https://doi.org/10.1371/journal.pone.0224711

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Demirel S, Vingrys AJ (1994) Eye movements during perimetry and the effect that fixational instability has on perimetric outcomes. J Glaucoma 3:28–35

    Article  CAS  Google Scholar 

  15. Fujii GY, de Juan E Jr, Sunness J, Humayun MS, Pieramici DJ, Chang TS (2002) Patient selection for macular translocation surgery using the scanning laser ophthalmoscope. Ophthalmology 109:1737–1744. https://doi.org/10.1016/s0161-6420(02)01120-x

    Article  PubMed  Google Scholar 

  16. Rohrschneider K, Springer C, Bültmann S, Völcker HE (2005) Microperimetry — comparison between the micro perimeter 1 and scanning laser ophthalmoscope — fundus perimetry. Am J Ophthalmol 139:125–134. https://doi.org/10.1016/j.ajo.2004.08.060

    Article  PubMed  Google Scholar 

  17. Rohrschneider K, Bultmann S, Springer C (2008) Use of fundus perimetry (microperimetry) to quantify macular sensitivity. Prog Retin Eye Res 27:536–548. https://doi.org/10.1016/j.preteyeres.2008.07.003

    Article  PubMed  Google Scholar 

  18. Molina-Martin A, Pinero DP, Perez-Cambrodi RJ (2017) Normal values for microperimetry with the MAIA microperimeter: sensitivity and fixation analysis in healthy adults and children. Eur J Ophthalmol 27:607–613. https://doi.org/10.5301/ejo.5000930

    Article  PubMed  Google Scholar 

  19. Grenga PL, Fragiotta S, Meduri A, Lupo S, Marenco M, Vingolo EM (2013) Fixation stability measurements in patients with neovascular age-related macular degeneration treated with ranibizumab. Can J Ophthalmol 48:394–399. https://doi.org/10.1016/j.jcjo.2013.04.006

    Article  PubMed  Google Scholar 

  20. Midena E, Vujosevic S, Convento E, Manfre A, Cavarzeran F, Pilotto E (2007) Microperimetry and fundus autofluorescence in patients with early age-related macular degeneration. Br J Ophthalmol 91:1499–1503. https://doi.org/10.1136/bjo.2007.119685

    Article  PubMed  PubMed Central  Google Scholar 

  21. Midena E, Pilotto E (2017) Microperimetry in age: related macular degeneration. Eye (Lond) 31:985–994. https://doi.org/10.1038/eye.2017.34

    Article  CAS  Google Scholar 

  22. Sivaprasad S, Bird A, Nitiahpapand R, Nicholson L, Hykin P, Chatziralli I, Moorfields UCLAMDC (2016) Perspectives on reticular pseudodrusen in age-related macular degeneration. Surv Ophthalmol 61:521–537. https://doi.org/10.1016/j.survophthal.2016.02.005

    Article  PubMed  Google Scholar 

  23. Ooto S, Ellabban AA, Ueda-Arakawa N, Oishi A, Tamura H, Yamashiro K, Tsujikawa A, Yoshimura N (2013) Reduction of retinal sensitivity in eyes with reticular pseudodrusen. Am J Ophthalmol 156(1184–1191):e1182. https://doi.org/10.1016/j.ajo.2013.06.036

    Article  Google Scholar 

  24. Acton JH, Smith RT, Hood DC, Greenstein VC (2012) Relationship between retinal layer thickness and the visual field in early age-related macular degeneration. Invest Ophthalmol Vis Sci 53:7618–7624. https://doi.org/10.1167/iovs.12-10361

    Article  PubMed  PubMed Central  Google Scholar 

  25. Wu Z, Ayton LN, Luu CD, Guymer RH (2014) Relationship between retinal microstructures on optical coherence tomography and microperimetry in age-related macular degeneration. Ophthalmology 121:1445–1452. https://doi.org/10.1016/j.ophtha.2014.01.025

    Article  PubMed  Google Scholar 

  26. Fragiotta S, Carnevale C, Cutini A, Vingolo EM (2017) Correlation between retinal function and microstructural foveal changes in intermediate age related macular degeneration. Int J Retina Vitreous 3:8. https://doi.org/10.1186/s40942-017-0061-3

    Article  PubMed  PubMed Central  Google Scholar 

  27. Grenga PL, Fragiotta S, Cutini A, Meduri A, Vingolo EM (2017) Microperimetric evaluation in patients with adult-onset foveomacular vitelliform dystrophy. Indian J Ophthalmol 65:385–389. https://doi.org/10.4103/ijo.IJO_984_16

    Article  PubMed  PubMed Central  Google Scholar 

  28. Wakabayashi T, Sawa M, Gomi F, Tsujikawa M (2010) Correlation of fundus autofluorescence with photoreceptor morphology and functional changes in eyes with retinitis pigmentosa. Acta Ophthalmol 88:e177-183. https://doi.org/10.1111/j.1755-3768.2010.01926.x

    Article  PubMed  Google Scholar 

  29. Tsai ASH, Gan ATL, Ting DSW, Wong CW, Teo KYC, Tan ACS, Lee SY, Wong TY, Tan GSW, Gemmy Cheung CM (2019) DIABETIC MACULAR ISCHEMIA: correlation of retinal vasculature changes by optical coherence tomography angiography and functional deficit. Retina. https://doi.org/10.1097/IAE.0000000000002721

    Article  PubMed  Google Scholar 

  30. Lupo S, Grenga PL, Vingolo EM (2011) Fourier-domain optical coherence tomography and microperimetry findings in retinitis pigmentosa. Am J Ophthalmol 151:106–111. https://doi.org/10.1016/j.ajo.2010.07.026

    Article  PubMed  Google Scholar 

  31. Battaglia Parodi M, Iacono P, Panico D, Cascavilla M, Bandello F (2015) Microperimetric assessment of the two optical coherence tomography subtypes of acute macular neuroretinopathy. Clin Exp Ophthalmol 43:637–642. https://doi.org/10.1111/ceo.12519

    Article  PubMed  Google Scholar 

  32. Tomiyasu T, Hirano Y, Suzuki N, Esaki Y, Yasuda Y, Uemura A, Yasukawa T, Yoshida M, Ogura Y (2019) Structural and functional analyses of retinal ischemia in eyes with retinal vein occlusion: relationship with macular edema or microaneurysm formation. Ophthalmic Res 61:218–225. https://doi.org/10.1159/000493489

    Article  PubMed  Google Scholar 

  33. Kogo T, Muraoka Y, Ooto S, Suzuma K, Murakami T, Iida Y, Iida-Miwa Y, Ghashut R, Miyata M, Tsujikawa A (2019) Fixation status after resolution of macular edema associated with branch retinal vein occlusion. Retina 39:1896–1905. https://doi.org/10.1097/IAE.0000000000002250

    Article  PubMed  Google Scholar 

  34. Iftikhar M, Kherani S, Kaur R, Lemus M, Nefalar A, Usmani B, Junaid N, Campochiaro PA, Scholl HPN, Shah SM (2018) Progression of retinitis pigmentosa as measured on microperimetry: The PREP-1 study. Ophthalmol Retina 2:502–507. https://doi.org/10.1016/j.oret.2017.09.008

    Article  PubMed  Google Scholar 

  35. Matsuura M, Murata H, Fujino Y, Hirasawa K, Yanagisawa M, Asaoka R (2018) Evaluating the usefulness of MP-3 microperimetry in glaucoma patients. Am J Ophthalmol 187:1–9. https://doi.org/10.1016/j.ajo.2017.12.002

    Article  PubMed  Google Scholar 

  36. Sharp PF, Manivannan A (1997) The scanning laser ophthalmoscope. Phys Med Biol 42:951–966. https://doi.org/10.1088/0031-9155/42/5/014

    Article  CAS  PubMed  Google Scholar 

  37. Weingessel B, Sacu S, Vecsei-Marlovits PV, Weingessel A, Richter-Mueksch S, Schmidt-Erfurth U (2009) Interexaminer and intraexaminer reliability of the microperimeter MP-1. Eye (Lond) 23:1052–1058. https://doi.org/10.1038/eye.2008.237

    Article  CAS  Google Scholar 

  38. Rossetti L, Digiuni M, Rosso A, Riva R, Barbaro G, Smolek MK, Orzalesi N, De Cilla S, Autelitano A, Fogagnolo P (2015) Compass: clinical evaluation of a new instrument for the diagnosis of glaucoma. PLoS ONE 10:e0122157. https://doi.org/10.1371/journal.pone.0122157

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Fogagnolo P, Digiuni M, Montesano G, Rui C, Morales M, Rossetti L (2018) Compass fundus automated perimetry. Eur J Ophthalmol 28:481–490. https://doi.org/10.1177/1120672118757667

    Article  PubMed  Google Scholar 

  40. Longhin E, Convento E, Pilotto E, Bonin G, Vujosevic S, Kotsafti O, Midena E (2013) Static and dynamic retinal fixation stability in microperimetry. Can J Ophthalmol 48:375–380. https://doi.org/10.1016/j.jcjo.2013.05.021

    Article  PubMed  Google Scholar 

  41. Fragiotta S, Carnevale C, Cutini A, Rigoni E, Grenga PL, Vingolo EM (2018) Factors influencing fixation stability area: a comparison of two methods of recording. Optom Vis Sci 95:384–390. https://doi.org/10.1097/OPX.0000000000001201

    Article  PubMed  Google Scholar 

  42. Schonbach EM, Strauss RW, Kong X, Munoz B, Ibrahim MA, Sunness JS, Birch DG, Hahn GA, Nasser F, Zrenner E, Sadda SR, West SK, Scholl HPN, ProgStar Study G (2018) Longitudinal changes of fixation location and stability within 12 months in Stargardt disease: ProgStar Report No. 12. Am J Ophthalmol 193: 54-61 doi:https://doi.org/10.1016/j.ajo.2018.06.003

  43. Shi Y, Liu M, Wang X, Zhang C, Huang P (2013) Fixation behavior in primary open angle glaucoma at early and moderate stage assessed by the MicroPerimeter MP-1. J Glaucoma 22:169–173. https://doi.org/10.1097/IJG.0b013e3182311dce

    Article  PubMed  Google Scholar 

  44. Greenstein VC, Santos RA, Tsang SH, Smith RT, Barile GR, Seiple W (2008) Preferred retinal locus in macular disease: characteristics and clinical implications. Retina 28:1234–1240. https://doi.org/10.1097/IAE.0b013e31817c1b47

    Article  PubMed  PubMed Central  Google Scholar 

  45. Timberlake GT, Sharma MK, Grose SA, Gobert DV, Gauch JM, Maino JH (2005) Retinal location of the preferred retinal locus relative to the fovea in scanning laser ophthalmoscope images. Optom Vis Sci 82:177–185. https://doi.org/10.1097/01.opx.0000156311.49058.c8

    Article  PubMed  Google Scholar 

  46. Crossland MD, Culham LE, Kabanarou SA, Rubin GS (2005) Preferred retinal locus development in patients with macular disease. Ophthalmology 112:1579–1585. https://doi.org/10.1016/j.ophtha.2005.03.027

    Article  PubMed  Google Scholar 

  47. Yusuf IH, Jolly JK, Ratnarajan G, Salmon JF (2018) Microperimetry and optical coherence tomography imaging in the fellow eye of patients with unilateral focal ischaemic glaucoma. Eye (Lond) 32:1372–1379. https://doi.org/10.1038/s41433-018-0094-3

    Article  Google Scholar 

  48. Montesano G, Crabb DP, Jones PR, Fogagnolo P, Digiuni M, Rossetti LM (2018) Evidence for alterations in fixational eye movements in glaucoma. BMC Ophthalmol 18:191. https://doi.org/10.1186/s12886-018-0870-7

    Article  PubMed  PubMed Central  Google Scholar 

  49. Advanced Glaucoma Intervention Study Investigators (1994) Advanced Glaucoma Intervention Study. 2. Visual field test scoring and reliability. Ophthalmology 101: 1445–1455

  50. Heijl A, Bengtsson B, Chauhan BC, Lieberman MF, Cunliffe I, Hyman L, Leske MC (2008) A comparison of visual field progression criteria of 3 major glaucoma trials in early manifest glaucoma trial patients. Ophthalmology 115:1557–1565. https://doi.org/10.1016/j.ophtha.2008.02.005

    Article  PubMed  Google Scholar 

  51. Chauhan BC, Garway-Heath DF, Goni FJ, Rossetti L, Bengtsson B, Viswanathan AC, Heijl A (2008) Practical recommendations for measuring rates of visual field change in glaucoma. Br J Ophthalmol 92:569–573. https://doi.org/10.1136/bjo.2007.135012

    Article  CAS  PubMed  Google Scholar 

  52. Katz J, Sommer A, Witt K (1991) Reliability of visual field results over repeated testing. Ophthalmology 98:70–75. https://doi.org/10.1016/s0161-6420(91)32339-x

    Article  CAS  PubMed  Google Scholar 

  53. Igarashi N, Matsuura M, Hashimoto Y, Hirasawa K, Murata H, Inoue T, Ryo O, Aihara M, Asaoka R (2016) Assessing visual fields in patients with retinitis pigmentosa using a novel microperimeter with eye tracking: the MP-3. PLoS ONE 11:e0166666. https://doi.org/10.1371/journal.pone.0166666

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Raza AS, Cho J, de Moraes CG, Wang M, Zhang X, Kardon RH, Liebmann JM, Ritch R, Hood DC (2011) Retinal ganglion cell layer thickness and local visual field sensitivity in glaucoma. Arch Ophthalmol 129:1529–1536. https://doi.org/10.1001/archophthalmol.2011.352

    Article  PubMed  PubMed Central  Google Scholar 

  55. Turpin A, Chen S, Sepulveda JA, McKendrick AM (2015) Customizing structure-function displacements in the macula for individual differences. Invest Ophthalmol Vis Sci 56:5984–5989. https://doi.org/10.1167/iovs.15-17384

    Article  PubMed  Google Scholar 

  56. Perdicchi A, de Paula A, Sordi E, Scuderi G (2019) Cluster analysis of computerized visual field and optical coherence tomography-ganglion cell complex defects in high intraocular pressure patients or early stage glaucoma. Eur J Ophthalmol. https://doi.org/10.1177/1120672119841774

    Article  PubMed  Google Scholar 

  57. Acton JH, Smith RT, Greenberg JP, Greenstein VC (2012) Comparison between MP-1 and Humphrey visual field defects in glaucoma and retinitis pigmentosa. Optom Vis Sci 89:1050–1058. https://doi.org/10.1097/OPX.0b013e31825da18c

    Article  PubMed  PubMed Central  Google Scholar 

  58. Acton JH, Bartlett NS, Greenstein VC (2011) Comparing the Nidek MP-1 and Humphrey field analyzer in normal subjects. Optom Vis Sci 88:1288–1297. https://doi.org/10.1097/OPX.0b013e31822b3746

    Article  PubMed  PubMed Central  Google Scholar 

  59. Balasubramanian S, Uji A, Lei J, Velaga S, Nittala M, Sadda S (2018) Interdevice comparison of retinal sensitivity assessments in a healthy population: the CenterVue MAIA and the Nidek MP-3 microperimeters. Br J Ophthalmol 102:109–113. https://doi.org/10.1136/bjophthalmol-2017-310258

    Article  PubMed  Google Scholar 

  60. Palkovits S, Hirnschall N, Georgiev S, Leisser C, Findl O (2018) Test-retest reproducibility of the microperimeter MP3 with fundus image tracking in healthy subjects and patients with macular disease. Transl Vis Sci Technol. https://doi.org/10.1167/tvst.7.1.17

    Article  PubMed  PubMed Central  Google Scholar 

  61. Acton JH, Greenstein VC (2013) Fundus-driven perimetry (microperimetry) compared to conventional static automated perimetry: similarities, differences, and clinical applications. Can J Ophthalmol 48:358–363. https://doi.org/10.1016/j.jcjo.2013.03.021

    Article  PubMed  PubMed Central  Google Scholar 

  62. Vingolo EM, Napolitano G, Fragiotta S (2018) Microperimetric biofeedback training: fundamentals, strategies and perspectives. Front Biosci (Schol Ed) 10:48–64. https://doi.org/10.2741/s500

    Article  Google Scholar 

  63. Wong EN, Morgan WH, Chen FK (2017) Intersession test-retest variability of 10–2 MAIA microperimetry in fixation-threatening glaucoma. Clin Ophthalmol 11:745–752. https://doi.org/10.2147/OPTH.S131371

    Article  PubMed  PubMed Central  Google Scholar 

  64. Asahina Y, Kitano M, Hashimoto Y, Yanagisawa M, Murata H, Inoue T, Obata R, Asaoka R (2017) The structure-function relationship measured with optical coherence tomography and a microperimeter with auto-tracking: the MP-3, in patients with retinitis pigmentosa. Sci Rep 7:15766. https://doi.org/10.1038/s41598-017-16143-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Lucy KA, Wollstein G (2016) Structural and functional evaluations for the early detection of glaucoma. Expert Rev Ophthalmol 11:367–376. https://doi.org/10.1080/17469899.2016.1229599

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Sato S, Hirooka K, Baba T, Tenkumo K, Nitta E, Shiraga F (2013) Correlation between the ganglion cell-inner plexiform layer thickness measured with cirrus HD-OCT and macular visual field sensitivity measured with microperimetry. Invest Ophthalmol Vis Sci 54:3046–3051. https://doi.org/10.1167/iovs.12-11173

    Article  PubMed  Google Scholar 

  67. Lima VC, Prata TS, De Moraes CG, Kim J, Seiple W, Rosen RB, Liebmann JM, Ritch R (2010) A comparison between microperimetry and standard achromatic perimetry of the central visual field in eyes with glaucomatous paracentral visual-field defects. Br J Ophthalmol 94:64–67. https://doi.org/10.1136/bjo.2009.159772

    Article  CAS  PubMed  Google Scholar 

  68. Orzalesi N, Miglior S, Lonati C, Rosetti L (1998) Microperimetry of localized retinal nerve fiber layer defects. Vision Res 38:763–771. https://doi.org/10.1016/s0042-6989(97)00171-5

    Article  CAS  PubMed  Google Scholar 

  69. Miglior S (2002) Microperimetry and glaucoma. Acta Ophthalmol Scand Suppl 236:19. https://doi.org/10.1034/j.1600-0420.80.s236.9.x

    Article  CAS  PubMed  Google Scholar 

  70. Leisser C, Palkovits S, Hirnschall N, Georgiev S, Findl O (2020) Reproducibility of microperimeter 3 (MP-3) microperimetry in open-angle glaucoma patients. Ophthalmic Res 63:302–308. https://doi.org/10.1159/000501693

    Article  PubMed  Google Scholar 

  71. Hirooka K, Misaki K, Nitta E, Ukegawa K, Sato S, Tsujikawa A (2016) Comparison of macular integrity assessment (MAIA ), MP-3, and the humphrey field analyzer in the evaluation of the relationship between the structure and function of the macula. PLoS ONE 11:e0151000. https://doi.org/10.1371/journal.pone.0151000

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Rao HL, Hussain RS, Januwada M, Pillutla LN, Begum VU, Chaitanya A, Senthil S, Garudadri CS (2017) Structural and functional assessment of macula to diagnose glaucoma. Eye (Lond) 31:593–600. https://doi.org/10.1038/eye.2016.277

    Article  CAS  Google Scholar 

  73. Montesano G, Bryan SR, Crabb DP, Fogagnolo P, Oddone F, McKendrick AM, Turpin A, Lanzetta P, Perdicchi A, Johnson CA, Garway-Heath DF, Brusini P, Rossetti LM (2019) A comparison between the compass fundus perimeter and the humphrey field analyzer. Ophthalmology 126:242–251. https://doi.org/10.1016/j.ophtha.2018.08.010

    Article  PubMed  Google Scholar 

  74. Montesano G, Rossetti LM, McKendrick AM, Turpin A, Fogagnolo P, Oddone F, Lanzetta P, Perdicchi A, Johnson CA, Brusini P, Garway-Heath DF, Crabb DP (2020) Effect of fundus tracking on structure-function relationship in glaucoma. Br J Ophthalmol. https://doi.org/10.1136/bjophthalmol-2019-315070

    Article  PubMed  Google Scholar 

  75. Markowitz SN (2013) Microperimeters and microperimetry: new technology in ophthalmology with far-reaching applications. Can J Ophthalmol 48:347–348. https://doi.org/10.1016/j.jcjo.2013.07.010

    Article  PubMed  Google Scholar 

  76. Arrico L, Giannotti R, Fratipietro M, Malagola R (2016) Fascicular visual field defects in open-angle glaucoma: evaluation with microperimetry. J Ophthalmol 2016:8274954. https://doi.org/10.1155/2016/8274954

    Article  PubMed  PubMed Central  Google Scholar 

  77. Kita Y, Hollo G, Murai A, Kita R, Saito T, Hirakata A (2018) Circumpapillary structure-function relationships with microperimetry and spectral domain optical coherence tomography in glaucoma: a pilot study. Clin Ophthalmol 12:2535–2544. https://doi.org/10.2147/OPTH.S186739

    Article  PubMed  PubMed Central  Google Scholar 

  78. Wang L, Cioffi GA, Cull G, Dong J, Fortune B (2002) Immunohistologic evidence for retinal glial cell changes in human glaucoma. Invest Ophthalmol Vis Sci 43:1088–1094

    PubMed  Google Scholar 

  79. Graf T, Flammer J, Prunte C, Hendrickson P (1993) Gliosis-like retinal alterations in glaucoma patients. J Glaucoma 2:257–259

    Article  CAS  Google Scholar 

  80. Grieshaber MC, Orgul S, Schoetzau A, Flammer J (2007) Relationship between retinal glial cell activation in glaucoma and vascular dysregulation. J Glaucoma 16:215–219. https://doi.org/10.1097/IJG.0b013e31802d045a

    Article  PubMed  Google Scholar 

  81. Detry-Morel M (2009) Ophthalmoscopic presentation of presumed retinal glial cell activation (ARAM) in a glaucoma patient. Bull Soc Belge Ophtalmol: 69–72

  82. Nutzi C, Schotzau A, Grieshaber MC (2017) Structure and function relationship of activated retinal glia in primary open-angle glaucoma patients. J Ophthalmol 2017:7043752. https://doi.org/10.1155/2017/7043752

    Article  PubMed  PubMed Central  Google Scholar 

  83. Kameda T, Tanabe T, Hangai M, Ojima T, Aikawa H, Yoshimura N (2009) Fixation behavior in advanced stage glaucoma assessed by the MicroPerimeter MP-1. Jpn J Ophthalmol 53:580–587. https://doi.org/10.1007/s10384-009-0735-y

    Article  PubMed  Google Scholar 

  84. Huang G, Luo T, Gast TJ, Burns SA, Malinovsky VE, Swanson WH (2015) Imaging glaucomatous damage across the temporal raphe. Invest Ophthalmol Vis Sci 56:3496–3504. https://doi.org/10.1167/iovs.15-16730

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Ashimatey BS, King BJ, Malinovsky VE, Swanson WH (2018) Novel technique for quantifying retinal nerve fiber bundle abnormality in the temporal raphe. Optom Vis Sci 95:309–317. https://doi.org/10.1097/OPX.0000000000001202

    Article  PubMed  PubMed Central  Google Scholar 

  86. Mori S, Kurimoto T, Kanamori A, Sakamoto M, Ueda K, Yamada-Nakanishi Y, Nakamura M (2019) Discordance of disc-fovea raphe angles determined by optical coherence tomography and mp-3 microperimetry in eyes with a glaucomatous hemifield defect. Invest Ophthalmol Vis Sci 60:1403–1411. https://doi.org/10.1167/iovs.18-26354

    Article  CAS  PubMed  Google Scholar 

  87. Ratnarajan G, Jolly JK, Yusuf IH, Salmon JF (2018) The effect of trabeculectomy surgery on the central visual field in patients with glaucoma using microperimetry and optical coherence tomography. Eye (Lond) 32:1365–1371. https://doi.org/10.1038/s41433-018-0095-2

    Article  Google Scholar 

  88. Grenga PL, Trabucco P, Meduri A, Fragiotta S, Vingolo EM (2013) Microperimetric biofeedback in a patient with oculocutaneous albinism. Can J Ophthalmol 48:e105-107. https://doi.org/10.1016/j.jcjo.2012.11.011

    Article  PubMed  Google Scholar 

  89. Altpeter E, Mackeben M, Trauzettel-Klosinski S (2000) The importance of sustained attention for patients with maculopathies. Vision Res 40:1539–1547. https://doi.org/10.1016/s0042-6989(00)00059-6

    Article  CAS  PubMed  Google Scholar 

  90. Verboschi F, Domanico D, Nebbioso M, Corradetti G, Zaccaria Scalinci S, Vingolo EM (2013) New trends in visual rehabilitation with MP-1 microperimeter biofeedback: optic neural dysfunction. Funct Neurol 28:285–291. https://doi.org/10.11138/FNeur/2013.28.4.285

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank Matthew Hastings and Nives Gattazzo for proofreading the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alessandro de Paula.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Scuderi, L., Gattazzo, I., de Paula, A. et al. Understanding the role of microperimetry in glaucoma. Int Ophthalmol 42, 2289–2301 (2022). https://doi.org/10.1007/s10792-021-02203-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10792-021-02203-3

Keywords

Navigation