Abstract
Purpose
To measure the changes of macular microcirculation in cases with unilateral acute primary angle closure (APAC) who were managed by phacoemulsification.
Methods
Patients with unilateral APAC and managed by phacoemulsification were enrolled. The contralateral unaffected eyes were served as fellow group, and normal individuals were recruited as control group. Optical coherence tomography angiography (OCT-A) was performed to analyze the macular whole image vessel density (wiVD) and parafoveal vessel density (pfVD). The retinal nerve fiber layer (RNFL) and ganglion cell complex (GCC) thicknesses were assessed using spectral-domain optical coherence tomography.
Results
A total of 36 APAC patients and 35 eyes from 35 normal individuals were recruited. In the APAC eyes, the mean wiVD (42.1% ± 3.7%) and pfVD (45.2% ± 3.8%) in the superficial layers (wiVD-SL and pfVD-SL) were both significantly reduced, compared to fellow eyes (45.7% ± 3.1%, 48.7% ± 3.1%) and control eyes (44.4% ± 4.7%, 47.4% ± 5.1%) (P < 0.05). They were all statistically correlated with RNFL, GCC, visual field pattern standard deviation (PSD), and mean deviation (MD).
Conclusion
The macular OCT-A parameters including wiVD-SL and pfVD-SL were significantly reduced in the eyes with APAC compared to the fellow unaffected eyes and normal control eyes. They were correlated well with RNFL, GCC, PSD and MD. The macular vessel density parameters may help monitor the progression of APAC.
This is a preview of subscription content, access via your institution.


Data availability
The datasets used in this study are available from the corresponding author on reasonable request.
References
Tham YC, Li X, Wong TY, Quigley HA, Aung T, Cheng CY (2014) Global prevalence of glaucoma and projections of glaucoma burden through 2040: a systematic review and meta-analysis. Ophthalmology 121(11):2081–2090. https://doi.org/10.1016/j.ophtha.2014.05.013
Zhang S, Wu C, Liu L, Jia Y, Zhang Y, Zhang Y, Zhang H, Zhong Y, Huang D (2017) Optical coherence tomography angiography of the peripapillary retina in primary angle-closure glaucoma. Am J Ophthalmol 182:194–200. https://doi.org/10.1016/j.ajo.2017.07.024
Wang X, Jiang C, Kong X, Yu X, Sun X (2017) Peripapillary retinal vessel density in eyes with acute primary angle closure: an optical coherence tomography angiography study. Graefes Arch Clin Exp Ophthalmol 255(5):1013–1018. https://doi.org/10.1007/s00417-017-3593-1
Moghimi S, SafiZadeh M, Fard MA, Motamed-Gorji N, Khatibi N, Chen R, Weinreb RN (2019) Changes in optic nerve head vessel density after acute primary angle closure episode. Invest Ophthalmol Vis Sci 60(2):552–558. https://doi.org/10.1167/iovs.18-25915
Moghimi S, SafiZadeh M, Xu BY, Fard MA, Khatibi N, Rao HL, Weinreb RN (2020) Vessel density and retinal nerve fibre layer thickness following acute primary angle closure. Br J Ophthalmol 104(8):1103–1108. https://doi.org/10.1136/bjophthalmol-2019-314789
Nongpiur ME, Ku JY, Aung T (2011) Angle closure glaucoma: a mechanistic review. Curr Opin Ophthalmol 22(2):96–101. https://doi.org/10.1097/ICU.0b013e32834372b9
Yanagi M, Kawasaki R, Wang JJ, Wong TY, Crowston J, Kiuchi Y (2011) Vascular risk factors in glaucoma: a review. Clin Exp Ophthalmol 39(3):252–258. https://doi.org/10.1111/j.1442-9071.2010.02455.x
Tan O, Chopra V, Lu AT, Schuman JS, Ishikawa H, Wollstein G, Varma R, Huang D (2009) Detection of macular ganglion cell loss in glaucoma by Fourier-domain optical coherence tomography. Ophthalmology. https://doi.org/10.1016/j.ophtha.2009.05.025
Loewen NA, Xinbo Zhang O, Tan BA, Francis DS, Greenfield JS, Schuman RV, Huang D (2015) Combining measurements from three anatomical areas for glaucoma diagnosis using Fourier-domain optical coherence tomography. British J Ophthalmol 99(9):1224–1229. https://doi.org/10.1136/bjophthalmol-2014-305907
Shoji T, Zangwill LM, Akagi T, Saunders LJ, Yarmohammadi A, Manalastas PIC, Penteado RC, Weinreb RN (2017) Progressive macula vessel density loss in primary open-angle glaucoma: a longitudinal study. Am J Ophthalmol 182:107–117. https://doi.org/10.1016/j.ajo.2017.07.011
Liu K, Huizhuo X, Jiang H, Wang H, Wang Pin, Yi X, Li F, Bei X, Yao X, Zou J (2020) Macular vessel density and foveal avascular zone parameters in patients after acute primary angle closure determined by OCT angiography. Sci Rep. https://doi.org/10.1038/s41598-020-73223-9
Romkens HCS, Beckers HJM, Schouten J, Nuijts R, Berendschot T, Breusegem CM, Webers CAB (2019) Early phacoemulsification after acute angle closure in patients with coexisting cataract. J Glaucoma 28(2):e34–e35. https://doi.org/10.1097/IJG.0000000000001111
Zhao Z, Zhu X, He W, Jiang C, Lu Y (2016) Schlemm’s canal expansion after uncomplicated phacoemulsification surgery: an optical coherence tomography study. Invest Ophthalmol Vis Sci 57(15):6507–6512. https://doi.org/10.1167/iovs.16-20583
Hood DC, Raza AS, de Moraes CG, Liebmann JM, Ritch R (2013) Glaucomatous damage of the macula. Prog Retin Eye Res 32:1–21. https://doi.org/10.1016/j.preteyeres.2012.08.003
Yu DY, Cringle SJ, Balaratnasingam C, Morgan WH, Yu PK, Su EN (2013) Retinal ganglion cells: energetics, compartmentation, axonal transport, cytoskeletons and vulnerability. Prog Retin Eye Res 36:217–246. https://doi.org/10.1016/j.preteyeres.2013.07.001
Yu DY, Yu PK, Cringle SJ, Kang MH, Su EN (2014) Functional and morphological characteristics of the retinal and choroidal vasculature. Prog Retin Eye Res 40:53–93. https://doi.org/10.1016/j.preteyeres.2014.02.001
Takusagawa HL, Liu L, Ma KN, Jia YL, Gao SS, Zhang M, Edmunds B, Parikh M, Tehrani S, Morrison JC, Huang D (2017) Projection-resolved optical coherence tomography angiography of macular retinal circulation in glaucoma. Ophthalmology 124(11):1589–1599. https://doi.org/10.1016/j.ophtha.2017.06.002
Yarmohammadi A, Zangwill LM, Diniz-Filho A, Saunders LJ, Suh MH, Wu Z, Manalastas PIC, Akagi T, Medeiros FA, Weinreb RN (2017) Peripapillary and macular vessel density in patients with glaucoma and single-hemifield visual field defect. Ophthalmology 124(5):709–719. https://doi.org/10.1016/j.ophtha.2017.01.004
Rao HL, Pradhan ZS, Weinreb RN, Riyazuddin M, Dasari S, Venugopal JP, Puttaiah NK, Rao DAS, Devi S, Mansouri K, Webers CAB (2017) Vessel density and structural measurements of optical coherence tomography in primary angle closure and primary angle closure glaucoma. Am J Ophthalmol 177:106–115. https://doi.org/10.1016/j.ajo.2017.02.020
Mwanza JC, Durbin MK, Budenz DL, Sayyad FE, Chang RT, Neelakantan A, Godfrey DG, Carter R, Crandall AS (2012) Glaucoma diagnostic accuracy of ganglion cell-inner plexiform layer thickness: comparison with nerve fiber layer and optic nerve head. Ophthalmology 119(6):1151–1158. https://doi.org/10.1016/j.ophtha.2011.12.014
Mwanza JC, Budenz DL, Godfrey DG, Neelakantan A, Sayyad FE, Chang RT, Lee RK (2014) Diagnostic performance of optical coherence tomography ganglion cell–inner plexiform layer thickness measurements in early glaucoma. Ophthalmology 121(4):849–854. https://doi.org/10.1016/j.ophtha.2013.10.044
Arend O, Wolf S, Harris A, Reim M (1995) The relationship of macular microcirculation to visual acuity in diabetic patients. Arch Ophthalmol 113(5):610–614. https://doi.org/10.1001/archopht.1995.01100050078034
Kristinsson JK, Gottfredsdottir MS, Stefansson E (1997) Retinal vessel dilatation and elongation precedes diabetic macular oedema. Br J Ophthalmol 81(4):274–278. https://doi.org/10.1136/bjo.81.4.274
Hartnett ME, Martiniuk D, Byfield G, Geisen P, Zeng G, Bautch VL (2008) Neutralizing VEGF decreases tortuosity and alters endothelial cell division orientation in arterioles and veins in a rat model of ROP: relevance to plus disease. Invest Ophthalmol Vis Sci 49(7):3107–3114. https://doi.org/10.1167/iovs.08-1780
Funding
The study was supported by the Research Initiation Project of the Eye Hospital, School of Ophthalmology and Optometry, Wenzhou Medical University and Nature and Science Foundation of Zhejiang Province. (Grant No. KYQD202001; Grant No. LQ19H120002).
Author information
Authors and Affiliations
Contributions
Nie L, Wen SM, Shen LJ and FU L designed this study; Fang J, Liu JB, and Wang J provided and collected the data; Yu GS and FU L analyzed and interpreted the data; Nie L, Chan YK and FU L wrote and revised the paper. All authors read and approved the final manuscript.
Corresponding author
Ethics declarations
Conflicts of interest
Fu L, None; Chan YK, None; Fang J, None; Liu JB, None; Wen SM, None; Shen LJ, None; Wang J, None; Yu GS, None; Nie L, None.
Ethical approval
This study was in accordance with the tenets of the Declaration of Helsinki and approved by the Institutional Review Board of Eye hospital, Wenzhou Medical University.
Informed consent
Informed consents were obtained from all participants. They signed the informed consents and agreed to publish their data and photographs.
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Fu, L., Chan, Y.K., Fang, J. et al. Optical coherence tomography angiography of the macular microcirculation in acute primary angle closure treated with phacoemulsification. Int Ophthalmol 42, 1781–1788 (2022). https://doi.org/10.1007/s10792-021-02175-4
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10792-021-02175-4