Skip to main content

Advertisement

Log in

Systemic oxidative stress biomarkers in patients with vitreomacular traction syndrome

  • Original Paper
  • Published:
International Ophthalmology Aims and scope Submit manuscript

Abstract

Purpose

To evaluate whether the systemic oxidative stress biomarkers increased in patients with vitreomacular traction syndrome (VMT).

Methods

This study compared 25 patients diagnosed with VMT with 20 healthy controls. As a biomarker of systemic oxidative stress, malondialdehyde (MDA) was measured. Total oxidant status (TOS) and total antioxidant status (TAS) were measured to evaluate the systemic oxidant status.

Results

Serum MDA values were significantly higher among the patients (p < 0.001). The ideal cut-off value for MDA was determined to be 22.1 µmol/L, with 80% sensitivity and 75% specificity. The between-group differences were not statistically significant for TOS or TAS (p = 0.326 and p = 0.698, respectively).

Conclusion

Increased MDA levels suggest that systemic oxidative stress may play a role in VMT.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Data availability

Data will be shared upon request.

References

  1. Wang L, Kondo M, Bill A (1997) Glucose metabolism in cat outer retina. Effects of light and hyperoxia. Invest Ophthalmol Vis Sci 38:48–55

    CAS  PubMed  Google Scholar 

  2. Öhman T, Tamene F, Göös H et al (2018) Systems pathology analysis identifies neurodegenerative nature of age-related vitreoretinal interface diseases. Aging Cell 17:e12809. https://doi.org/10.1111/acel.12809

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Klebe S, Callahan T, Power JHT (2014) Peroxiredoxin I and II in human eyes: cellular distribution and association with pterygium and DNA damage. J Histochem Cytochem 62:85–96. https://doi.org/10.1369/0022155413508409

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Birer S, Arda H, Kilic D, Baskol G (2019) Systemic oxidative stress in non-arteritic anterior ischemic optic neuropathy. Eye (Lond) 33:1140–1144. https://doi.org/10.1038/s41433-019-0388-0

    Article  Google Scholar 

  5. Nuzzi R, Marchese A, Gulino GR et al (2015) Influence of posterior vitreous detachment and type of intraocular lens on lipid peroxidation in the human vitreous. Mol Vis 21:1106–1112

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Ueno N, Sebag J, Hirokawa H, Chakrabarti B (1987) Effects of visible-light irradiation on vitreous structure in the presence of a photosensitizer. Exp Eye Res 44:863–870. https://doi.org/10.1016/s0014-4835(87)80048-9

    Article  CAS  PubMed  Google Scholar 

  7. Pinna A, Boscia F, Paliogiannis P et al (2019) Malondialdehyde levels in patients with age-related macular degeneration: a systematic review and meta-analysis. Retina. https://doi.org/10.1097/IAE.0000000000002574

    Article  Google Scholar 

  8. Toprak I, Kucukatay V, Yildirim C et al (2014) Increased systemic oxidative stress in patients with keratoconus. Eye (Lond) 28:285–289. https://doi.org/10.1038/eye.2013.262

    Article  CAS  Google Scholar 

  9. Kishi S (2016) Vitreous anatomy and the vitreomacular correlation. Jpn J Ophthalmol 60:239–273. https://doi.org/10.1007/s10384-016-0447-z

    Article  PubMed  Google Scholar 

  10. Sebag J (2004) Anomalous posterior vitreous detachment: a unifying concept in vitreo-retinal disease. Graefe’s Arch Clin Exp Ophthalmol = Albr von Graefes Arch fur Klin und Exp Ophthalmol 242:690–698. https://doi.org/10.1007/s00417-004-0980-1

    Article  CAS  Google Scholar 

  11. de Smet MD, Gad Elkareem AM, Zwinderman AH (2013) The vitreous, the retinal interface in ocular health and disease. Ophthalmol J Int d’ophtalmologie Int J Ophthalmol Zeitschrift fur Augenheilkd 230:165–178. https://doi.org/10.1159/000353447

    Article  Google Scholar 

  12. Steel DHW, Lotery AJ (2013) Idiopathic vitreomacular traction and macular hole: a comprehensive review of pathophysiology, diagnosis, and treatment. Eye (Lond) 27(Suppl 1):S1-21. https://doi.org/10.1038/eye.2013.212

    Article  Google Scholar 

  13. Zapata MA, Figueroa MS, Esteban González E et al (2017) Prevalence of vitreoretinal interface abnormalities on spectral-domain OCT in healthy participants over 45 years of age. Ophthalmol Retin 1:249–254. https://doi.org/10.1016/j.oret.2016.11.001

    Article  Google Scholar 

  14. Meuer SM, Myers CE, Klein BEK et al (2015) The epidemiology of vitreoretinal interface abnormalities as detected by spectral-domain optical coherence tomography: the beaver dam eye study. Ophthalmology 122:787–795. https://doi.org/10.1016/j.ophtha.2014.10.014

    Article  PubMed  Google Scholar 

  15. Flaxel CJ, Adelman RA, Bailey ST et al (2020) Idiopathic epiretinal membrane and vitreomacular traction preferred practice pattern®. Ophthalmology 127:P145–P183. https://doi.org/10.1016/j.ophtha.2019.09.022

    Article  PubMed  Google Scholar 

  16. Bergandi L, Skorokhod OA, La Grotta R et al (2019) Oxidative stress, lipid peroxidation, and loss of hyaluronic acid in the human vitreous affected by synchysis scintillans. J Ophthalmol 2019:7231015. https://doi.org/10.1155/2019/7231015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Wert KJ, Velez G, Cross MR et al (2018) Extracellular superoxide dismutase (SOD3) regulates oxidative stress at the vitreoretinal interface. Free Radic Biol Med 124:408–419. https://doi.org/10.1016/j.freeradbiomed.2018.06.024

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Duker JS, Kaiser PK, Binder S et al (2013) The international vitreomacular traction study group classification of vitreomacular adhesion, traction, and macular hole. Ophthalmology 120:2611–2619. https://doi.org/10.1016/j.ophtha.2013.07.042

    Article  PubMed  Google Scholar 

  19. Erel O (2005) A new automated colorimetric method for measuring total oxidant status. Clin Biochem 38:1103–1111. https://doi.org/10.1016/j.clinbiochem.2005.08.008

    Article  CAS  PubMed  Google Scholar 

  20. Tsai C-Y, Hsieh Y-T, Lai T-T, Yang C-M (2017) Idiopathic macular holes and direction of vitreomacular traction: structural changes and surgical outcomes. Eye (Lond) 31:1689–1696. https://doi.org/10.1038/eye.2017.141

    Article  PubMed  PubMed Central  Google Scholar 

  21. Ilhan C, Citirik M, Uzel MM, Tekin K (2019) The relationship of neutrophil to lymphocyte ratio with vitreomacular traction syndrome. Med Hypothesis, Discov Innov Ophthalmol J 8:22–27

    Google Scholar 

  22. Suzuki Y, Adachi K, Takahashi S et al (2017) Oxidative stress in the vitreous fluid with rhegmatogenous retinal detachment. J Clin Exp Ophthalmol 8:1–5

    Google Scholar 

  23. Jansen E, Ruskovska T (2015) Serum biomarkers of (anti)oxidant status for epidemiological studies. Int J Mol Sci 16:27378–27390. https://doi.org/10.3390/ijms161126032

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Balmus I-M, Alexa AI, Ciuntu R-E et al (2020) Oxidative stress markers dynamics in keratoconus patients’ tears before and after corneal collagen crosslinking procedure. Exp Eye Res 190:107897. https://doi.org/10.1016/j.exer.2019.107897

    Article  CAS  PubMed  Google Scholar 

  25. Zanon-Moreno V, Marco-Ventura P, Lleo-Perez A et al (2008) Oxidative stress in primary open-angle glaucoma. J Glaucoma 17:263–268. https://doi.org/10.1097/IJG.0b013e31815c3a7f

    Article  PubMed  Google Scholar 

  26. Banjac L, Banjac G, Kotur-Stevuljević J et al (2018) Pro-oxidants and antioxidants in retinopathy of prematurity. Acta Clin Croat 57:458–463. https://doi.org/10.20471/acc.2018.57.03.08

    Article  PubMed  PubMed Central  Google Scholar 

  27. Purola PKM, Nättinen JE, Ojamo MUI et al (2021) Prevalence and 11-year incidence of common eye diseases and their relation to health-related quality of life, mental health, and visual impairment. Qual life Res an Int J Qual life Asp Treat care Rehabil. https://doi.org/10.1007/s11136-021-02817-1

    Article  Google Scholar 

Download references

Funding

Health Science University, Kayseri City Training and Research Hospital, Foundation of Scientific Research Support funded this study (2019–22).

Author information

Authors and Affiliations

Authors

Contributions

D.K and D.K conceived the study and its design, acquired the data, drafted the article, critically revised the paper for important intellectual content, and obtained funding. ES, BK and EV conceived the study and its design; acquired and interpreted the data; and critically revised the manuscript for important intellectual content. SG and ND contributed to collection of data; statistical analysis; obtained funding; provided administrative, technical, or material support; and supervised the whole course of the study. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Deniz Kilic.

Ethics declarations

Conflict of interest

The authors report no conflict of interest.

Consent to participate and Ethical disclosure

The Research Ethics Committee of Erciyes University approved the study (2019/769), and the tenets of the Declaration of Helsinki were strictly followed. After being notified about the purpose and possible consequences of the study, each patient signed an informed consent document.

Consent to publish

Informed consent was taken from individuals.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kilic, D., Kocer, D., Sırakaya, E. et al. Systemic oxidative stress biomarkers in patients with vitreomacular traction syndrome. Int Ophthalmol 41, 3789–3796 (2021). https://doi.org/10.1007/s10792-021-01949-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10792-021-01949-0

Keywords

Navigation