Skip to main content
Log in

Impact of age, sex and refractive error on conjunctival and Tenon’s capsule thickness dimensions by swept-source optical coherence tomography in a large population

  • Original Paper
  • Published:
International Ophthalmology Aims and scope Submit manuscript

Abstract

Purpose

To evaluate conjunctival and Tenon’s capsule thickness (CTT) in a large healthy population using swept-source optical coherence tomography (SS-OCT), investigating the impact of age, sex and refractive error.

Methods

630 healthy participants underwent a complete ophthalmological examination. CTT was manually measured in the temporal and nasal quadrants at 0, 1, 2 and 3 mm from the scleral spur using SS-OCT (CTT0, CTT1, CTT2 and CTT3, respectively). These dimensions were then assessed for associations in a multivariate regression model with age, sex, refractive error and anterior scleral thickness (AST). The reproducibility of the CTT measurements was determined in 30 individuals.

Results

CTT dimensions could be measured in 596 cases (94.6%); mean age was 42.6 ± 17.2 years (range 5–86). Mean CTT0 was 199.2 ± 33.8 and 192.9 ± 33.9 µm, mean CTT1 195.4 ± 38.0 µm and 199.9 ± 50.9 µm, mean CTT2 187.0 ± 38.4 and 194.8 ± 48.9 µm, and CTT3 180.5 ± 35.6 µm and 191.8 ± 43.7 µm, for the temporal and nasal quadrants, respectively. No difference in CTT was observed in the nasal versus temporal quadrant (p ≥ 0.106) except for the CTT0 and CTT3 (p = 0.001). Moderate correlation was observed between nasal and temporal CTT (R = 0.472, p < 0.001). In the multivariate model, no influence was observed by sex, refractive error and AST on CTT measurements (p ≥ 0.065). Negative association was observed between age and CTT (p < 0.005). The reproducibility was excellent (intraclass correlation coefficient ≥ 0.908).

Conclusions

SS-OCT allows for in vivo CTT evaluation. Our data document a wide range of measurements, showing negative association between CTT and age.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Availability of data and material (data transparency)

Available upon reasonable request.

References

  1. Knop E, Knop N (2005) The role of eye-associated lymphoid tissue in corneal immune protection. J Anat 206:271–285. https://doi.org/10.1111/j.1469-7580.2005.00394.x

    Article  PubMed  PubMed Central  Google Scholar 

  2. Efron N, Al-Dossari M, Pritchard N (2009) In vivo confocal microscopy of the bulbar conjunctiva. Clin Exp Ophthalmol 37:335–344. https://doi.org/10.1111/j.1442-9071.2009.02065.x

    Article  PubMed  Google Scholar 

  3. Roth A, Mühlendyck H, De Gottrau P (2002) The function of Tenon’s capsule revisited. J Fr Ophtalmol 25:968–976

    CAS  PubMed  Google Scholar 

  4. Feng Y, Simpson TL (2008) Corneal, limbal, and conjunctival epithelial thickness from optical coherence tomography. Optom Vis Sci 85:E880–E883. https://doi.org/10.1097/OPX.0b013e318185272d

    Article  PubMed  Google Scholar 

  5. Cho RI, Elner VM (2010) Closure of mid-posterior Tenon’s capsule in enucleation. Ophthal Plast Reconstr Surg 26:462–466. https://doi.org/10.1097/IOP.0b013e3181dac629

    Article  PubMed  Google Scholar 

  6. Koornneef L (1977) New insights in the human orbital connective tissue. Arch Ophthalmol 95:1269. https://doi.org/10.1001/archopht.1977.04450070167018

    Article  CAS  PubMed  Google Scholar 

  7. Ettl A, Koornneef L, Daxer A, Kramer J (1998) High-resolution magnetic resonance imaging of the orbital connective tissue system. Ophthal Plast Reconstr Surg 14:323–327. https://doi.org/10.1097/00002341-199809000-00004

    Article  CAS  PubMed  Google Scholar 

  8. Kara N, Yuksel K, Bozkurt E et al (2014) Comparison of conjunctival graft thickness after primary and recurrent pterygium surgery: anterior segment optical coherence tomography study. Indian J Ophthalmol 62:675. https://doi.org/10.4103/0301-4738.129765

    Article  PubMed  PubMed Central  Google Scholar 

  9. Gumus K, Crockett CH, Pflugfelder SC (2010) Anterior segment optical coherence tomography: a diagnostic instrument for conjunctivochalasis. Am J Ophthalmol 150:798-806.e2. https://doi.org/10.1016/j.ajo.2010.06.014

    Article  PubMed  PubMed Central  Google Scholar 

  10. Axmann S, Ebneter A, Zinkernagel MS (2016) Imaging of the sclera in patients with scleritis and episcleritis using anterior segment optical coherence tomography. Ocul Immunol Inflamm 24:29–34. https://doi.org/10.3109/09273948.2015.1025983

    Article  PubMed  Google Scholar 

  11. Nanji AA, Sayyad FE, Galor A et al (2015) High-resolution optical coherence tomography as an adjunctive tool in the diagnosis of corneal and conjunctival pathology. Ocul Surf 13:226–235. https://doi.org/10.1016/j.jtos.2015.02.001

    Article  PubMed  PubMed Central  Google Scholar 

  12. Kieval JZ, Karp CL, Abou Shousha M et al (2012) Ultra-high resolution optical coherence tomography for differentiation of ocular surface squamous neoplasia and pterygia. Ophthalmology 119:481–486. https://doi.org/10.1016/j.ophtha.2011.08.028

    Article  PubMed  Google Scholar 

  13. Howlett J, Vahdani K, Rossiter J (2014) Bulbar conjunctival and Tenon\’s layer thickness measurement using optical coherence tomography. J Curr Glaucoma Pract 8:63–66. https://doi.org/10.5005/jp-journals-10008-1163

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Singh M, Aung T, Aquino MC, Chew PTK (2009) Utility of bleb imaging with anterior segment optical coherence tomography in clinical decision-making after trabeculectomy. J Glaucoma 18:492–495. https://doi.org/10.1097/IJG.0b013e31818d38ab

    Article  PubMed  Google Scholar 

  15. Ciancaglini M, Carpineto P, Agnifili L et al (2008) Filtering bleb functionality: a clinical, anterior segment optical coherence tomography and in vivo confocal microscopy study. J Glaucoma 17:308–317. https://doi.org/10.1097/IJG.0b013e31815c3a19

    Article  PubMed  Google Scholar 

  16. Kumar DA, Agarwal A, Karnathi S, Patadiya R (2013) Anterior segment optical coherence tomography for imaging the sub-tenon space. Ophthalmic Res 50:231–234. https://doi.org/10.1159/000354381

    Article  PubMed  Google Scholar 

  17. Read SA, Alonso-Caneiro D, Vincent SJ et al (2016) Anterior eye tissue morphology: scleral and conjunctival thickness in children and young adults. Sci Rep 6:1–10. https://doi.org/10.1038/srep33796

    Article  CAS  Google Scholar 

  18. Zhang X, Li Q, Liu B et al (2011) In vivo cross-sectional observation and thickness measurement of bulbar conjunctiva using optical coherence tomography. Investig Ophthalmol Vis Sci 52:7787–7791. https://doi.org/10.1167/iovs.11-7749

    Article  Google Scholar 

  19. Zhang X, Li Q, Xiang M et al (2013) Bulbar conjunctival thickness measurements with optical coherence tomography in healthy Chinese subjects. Investig Ophthalmol Vis Sci 54:4705–4709. https://doi.org/10.1167/iovs.12-11003

    Article  Google Scholar 

  20. Francoz M, Karamoko I, Baudouin C, Labbé A (2011) Ocular surface epithelial thickness evaluation with spectral-domain optical coherence tomography. Investig Ophthalmol Vis Sci 52:9116–9123. https://doi.org/10.1167/iovs.11-7988

    Article  Google Scholar 

  21. Kuroda Y, Uji A, Morooka S et al (2017) Morphological features in anterior scleral inflammation using swept-source optical coherence tomography with multiple B-scan averaging. Br J Ophthalmol 101:411–417. https://doi.org/10.1136/bjophthalmol-2016-308561

    Article  PubMed  Google Scholar 

  22. Kessing SV (1968) Mucous gland system of the conjunctiva. A quantitative normal anatomical study. Acta Ophthalmol 95:1–133

    Google Scholar 

  23. Osterlind G (1944) An investigation into the presence of lymphatic tissue in the human conjunctiva, and its biological and clinical importance. Acta Ophthalmol 23:1–79

    Google Scholar 

  24. Zhao F, Cai S, Huang Z et al (2020) Optical coherence tomography angiography in pinguecula and pterygium. Cornea 39:99–103. https://doi.org/10.1097/ICO.0000000000002114

    Article  PubMed  Google Scholar 

  25. Minami K, Tokunaga T, Okamoto K et al (2018) Influence of pterygium size on corneal higher-order aberration evaluated using anterior-segment optical coherence tomography. BMC Ophthalmol 18:166. https://doi.org/10.1186/s12886-018-0837-8

    Article  PubMed  PubMed Central  Google Scholar 

  26. Liu Y-C, Devarajan K, Tan T-E et al (2019) Optical coherence tomography angiography for evaluation of reperfusion after pterygium surgery. Am J Ophthalmol 207:151–158. https://doi.org/10.1016/j.ajo.2019.04.003

    Article  PubMed  Google Scholar 

  27. Siddiqui Y, Yin J (2019) Anterior segment applications of optical coherence tomography angiography. Semin Ophthalmol 34:264–269. https://doi.org/10.1080/08820538.2019.1620805

    Article  PubMed  Google Scholar 

  28. Liang Q, Liang H, Liu H et al (2016) Ocular surface epithelial thickness evaluation in dry eye patients: clinical correlations. J Ophthalmol 2016:1–8. https://doi.org/10.1155/2016/1628469

    Article  CAS  Google Scholar 

  29. Fernández-Vigo JI, Fernández-Vigo JÁ, Macarro-Merino A et al (2016) Determinants of anterior chamber depth in a large Caucasian population and agreement between intra-ocular lens Master and Pentacam measurements of this variable. Acta Ophthalmol 94:e150–e155. https://doi.org/10.1111/aos.12824

    Article  PubMed  Google Scholar 

  30. O’Donnell C, Hartwig A, Radhakrishnan H (2011) Correlations between refractive error and biometric parameters in human eyes using the LenStar 900. Cont Lens Anterior Eye 34:26–31. https://doi.org/10.1016/j.clae.2010.10.006

    Article  PubMed  Google Scholar 

Download references

Funding

No funding was received.

Author information

Authors and Affiliations

Authors

Contributions

JIFV contributed to acquisition and analysis of the data, drafting the manuscript; HS contributed to acquisition of the data, drafting the manuscript; BBB contributed to interpretation of the data, drafting the manuscript; LDPGDL contributed to interpretation of the data, revision of the manuscript; IAFV contributed to design of the work, interpretation of data, revision of the manuscript; BK helped in concept and design of the work, revision of the manuscript; JAFV helped in concept and design of the work, interpretation of the data, revision of the manuscript. All authors approved the final version of the work.

Corresponding author

Correspondence to José Ignacio Fernández-Vigo.

Ethics declarations

Conflicts of interest

The authors declare that they have no conflict of interest.

Ethics approval

Obtained from the Centro Internacional de Oftalmologia Avanzada.

Consent to participate

Obtained.

Consent for publication

Obtained.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fernández-Vigo, J.I., Shi, H., Burgos-Blasco, B. et al. Impact of age, sex and refractive error on conjunctival and Tenon’s capsule thickness dimensions by swept-source optical coherence tomography in a large population. Int Ophthalmol 41, 3687–3698 (2021). https://doi.org/10.1007/s10792-021-01928-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10792-021-01928-5

Keywords

Navigation