Skip to main content
Log in

Bias of near-infrared light in evaluation of patients implanted with multifocal intraocular lenses

  • Original Paper
  • Published:
International Ophthalmology Aims and scope Submit manuscript

Abstract

Purpose

To compare visual quality between subjective tests and optical devices using near-infrared (NIR) light in patients implanted with monofocal, multifocal and enlarged depth-of-focus (EDoF) intraocular lenses (IOLs).

Methods

Cross-sectional study enrolling patients aged between 55 and 75 (axial length between 22 and 25 mm) bilaterally implanted with Tecnis IOLs (Johnson & Johnson) four months previously: 40 patients (80 eyes) with monofocal ZCB00, 41 patients (82 eyes) with bifocal diffractive ZMB00 and 48 patients (96 eyes) with EDoF Symfony. They were examined using subjective and objective tests. The subjective tests comprised visual acuity (VA) with ETDRS charts, contrast sensitivity (CS) with Pelli–Robson and CSV-1000E tests, and clear vision range (CVR). The objective tests using NIR light were performed with the KR-1 W wavefront analyzer and the OQAS.

Results

In the subjective tests, the monofocal group achieved the best outcomes in some of the VA and CS sections, while the bifocal group obtained the worst outcomes in some of the CS sections. In the objective tests, the bifocal group achieved the best results for VA and CS. Discrepancies between pseudoaccommodation range and CVR were found in the bifocal and EDoF groups.

Conclusions

Assessment of visual quality using NIR light implies greater bias for diffractive lenses than for EDoF lenses. This bias may be even greater with devices using longer light wavelengths or Hartmann–Shack technology. The difference in wavelength between NIR and visible light leads to dimming of near-vision focus and magnification of distance focus.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data availability

Data are available at the Miguel Servet University Hospital.

References

  1. Alio JL, Plaza-Puche AB, Férnandez-Buenaga R et al (2017) Multifocal intraocular lenses: an overview. Surv Ophthalmol 62:611–634. https://doi.org/10.1016/j.survophthal.2017.03.005

    Article  PubMed  Google Scholar 

  2. Breyer DRH, Kaymak H, Ax T et al (2017) Multifocal intraocular lenses and extended depth of focus intraocular lenses. Asia-Pacific J Ophthalmol 6:339–349

    Google Scholar 

  3. Akella SS, Juthani VV (2018) Extended depth of focus intraocular lenses for presbyopia. Curr Opin Ophthalmol 29:318–322. https://doi.org/10.1097/ICU.0000000000000490

    Article  PubMed  Google Scholar 

  4. Sáles CS, Manche EE (2015) Comparison of ocular aberrations measured by a Fourier-based Hartmann-Shack and Zernike-based Tscherning aberrometer before and after laser in situ keratomileusis. J Cataract Refract Surg 41:1820–1825. https://doi.org/10.1016/j.jcrs.2015.09.014

    Article  PubMed  Google Scholar 

  5. Piñero DP, Juan JT, Alió JL (2011) Intrasubject repeatability of internal aberrometry obtained with a new integrated aberrometer. J Refract Surg 27:509–517

    Article  Google Scholar 

  6. Kobashi H, Kamiya K, Shimizu K (2018) Impact of forward and backward scattering and corneal higher-order aberrations on visual acuity after penetrating keratoplasty. Semin Ophthalmol 33:748–756. https://doi.org/10.1080/08820538.2018.1427767

    Article  PubMed  Google Scholar 

  7. Charman WN, Montés-Micó R, Radhakrishnan H (2008) Problems in the measurement of wavefront aberration for eyes implanted with diffractive bifocal and multifocal intraocular lenses. J Refract Surg 24:280–286

    Article  Google Scholar 

  8. Alfonso JF, Fernández-Vega L, Baamonde MB, Montés-Micó R (2007) Correlation of pupil size with visual acuity and contrast sensitivity after implantation of an apodized diffractive intraocular lens. J Cataract Refract Surg 33:430–438. https://doi.org/10.1016/j.jcrs.2006.10.051

    Article  PubMed  Google Scholar 

  9. Esteve-Taboada JJ, Domínguez-Vicent A, Del Águila-Carrasco AJ et al (2015) Effect of large apertures on the optical quality of three multifocal lenses. J Refract Surg. https://doi.org/10.3928/1081597x-20150928-01

    Article  PubMed  Google Scholar 

  10. López-Miguel A, Martínez-Almeida L, González-García MJ et al (2013) Precision of higher-order aberration measurements with a new Placido-disk topographer and Hartmann-Shack wavefront sensor. J Cataract Refract Surg 39:242–249

    Article  Google Scholar 

  11. Hao J, Li L, Tian F, Zhang H (2016) Comparison of two types of visual quality analyzer for the measurement of high order aberrations. Int J Ophthalmol 9:292–297

    PubMed  PubMed Central  Google Scholar 

  12. Hua Y, Xu Z, Qiu W, Wu Q (2016) Precision (repeatability and reproducibility) and agreement of corneal power measurements obtained by Topcon KR-1W and iTrace. PLoS ONE 11:1–13

    Google Scholar 

  13. Hu A-L, Qiao L-Y, Zhang Y et al (2015) Reproducibility of optical quality parameters measured at objective and subjective best focuses in a double-pass system. Int J Ophthalmol. https://doi.org/10.3980/j.issn.2222-3959.2015.05.34

    Article  PubMed  PubMed Central  Google Scholar 

  14. Vilaseca M, Peris E, Pujol J et al (2010) Intra- and intersession repeatability of a double-pass instrument. Optom Vis Sci 87:675–681. https://doi.org/10.1097/OPX.0b013e3181ea1ad3

    Article  PubMed  Google Scholar 

  15. Iijima A, Shimizu K, Kobashi H et al (2015) Repeatability, reproducibility, and comparability of subjective and objective measurements of intraocular forward scattering in healthy subjects. Biomed Res Int 2015:925217. https://doi.org/10.1155/2015/925217

    Article  PubMed  PubMed Central  Google Scholar 

  16. Xu C-C, Xue T, Wang Q-M et al (2015) Repeatability and reproducibility of a double-pass optical quality analysis device. PLoS ONE 10:e0117587. https://doi.org/10.1371/journal.pone.0117587

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Elliott DB, Sanderson K, Conkey A (1990) The reliability of the Pelli-Robson contrast sensitivity chart. Ophthalmic Physiol Opt 10:21–24

    Article  CAS  Google Scholar 

  18. Mäntyjärvi M, Laitinen T (2001) Normal values for the Pelli-Robson. J Cataract Refract Surg. 27:261–266

    Article  Google Scholar 

  19. de Vries NE, Nuijts RMMA (2013) Multifocal intraocular lenses in cataract surgery: literature review of benefits and side effects. J Cataract Refract Surg 39:268–278. https://doi.org/10.1016/j.jcrs.2012.12.002

    Article  PubMed  Google Scholar 

  20. Liao X, Lin J, Tian J et al (2018) Evaluation of optical quality: ocular scattering and aberrations in eyes implanted with diffractive multifocal or monofocal intraocular lenses. Curr Eye Res 43:696–701. https://doi.org/10.1080/02713683.2018.1449220

    Article  PubMed  Google Scholar 

  21. Peyre C, Fumery L, Gatinel D (2005) Comparison of high-order optical aberrations induced by different multifocal contact lens geometries. J Fr Ophtalmol 28:599–604

    Article  CAS  Google Scholar 

  22. Nochez Y, Majzoub S, Pisella PJ (2011) Effect of residual ocular spherical aberration on objective and subjective quality of vision in pseudophakic eyes. J Cataract Refract Surg. https://doi.org/10.1016/j.jcrs.2010.12.056

    Article  PubMed  Google Scholar 

  23. Lee H, Lee K, Ahn JM et al (2014) Evaluation of optical quality parameters and ocular aberrations in multifocal intraocular lens implanted eyes. Yonsei Med J 55:1413–1420. https://doi.org/10.3349/ymj.2014.55.5.1413

    Article  PubMed  PubMed Central  Google Scholar 

  24. Vega F, Millán MS, Vila-Terricabras N, Alba-Bueno F (2015) Visible versus near-infrared optical performance of diffractive multifocal intraocular lenses. Invest Ophthalmol Vis Sci 56:7345–7351

    Article  Google Scholar 

  25. Campbell CE (2008) Wavefront measurements of diffractive and refractive multifocal intraocular lenses in an artificial eye. J Refract Surg 24:308–311. https://doi.org/10.3928/1081597X-20080301-15

    Article  PubMed  Google Scholar 

  26. Schwiegerling J, DeHoog E (2010) Problems testing diffractive intraocular lenses with Shack-Hartmann sensors. Appl Opt 49:D62–D68

    Article  Google Scholar 

  27. Gatinel D (2011) Double pass-technique limitations for evaluation of optical performance after diffractive IOL implantation. J Cataract Refract Surg. 37:621–622

    Article  Google Scholar 

  28. Hwang HS, Shin HY, Joo C-K (2014) Double-pass system (optical quality analysis system) for analysis of the multifocal function of a diffractive multifocal intraocular lens (Acrysof ReSTOR®) compared to a monofocal intraocular lens (Acrysof IQ®). J Opt Soc Korea 18:110–117. https://doi.org/10.3807/JOSK.2014.18.2.110

    Article  Google Scholar 

  29. Díaz-Doutón F, Benito A, Pujol J et al (2006) Comparison of the retinal image quality with a Hartmann-Shack wavefront sensor and a double-pass instrument. Investig Ophthalmol Vis Sci 47:1710–1716. https://doi.org/10.1167/iovs.05-1049

    Article  Google Scholar 

Download references

Funding

No funding was received.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francisco de Asís Bartol-Puyal.

Ethics declarations

Conflicts of interest

None of the authors has any conflict of interest.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional research committee (Comité de Ética de la Investigación de la Comunidad Autónoma de Aragón) and with the 1964 Declaration of Helsinki and its later amendments or comparable ethical standards.

Informed consent

All participants agreed to participate.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

de Asís Bartol-Puyal, F., Giménez, G., Méndez-Martínez, S. et al. Bias of near-infrared light in evaluation of patients implanted with multifocal intraocular lenses. Int Ophthalmol 41, 3171–3181 (2021). https://doi.org/10.1007/s10792-021-01882-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10792-021-01882-2

Keywords

Navigation