Skip to main content

Advertisement

Log in

Effect of the kappa angle on depth of focus after implantation of the TECNIS Symfony intraocular lens

  • Original Paper
  • Published:
International Ophthalmology Aims and scope Submit manuscript

Abstract

Purpose

To evaluate the clinical effect of TECNIS Symfony intraocular lens (IOL) implantation and identify the effect of kappa angle on the depth of focus (DOF) after implantation.

Methods

This prospective clinical study included consecutive patients who underwent cataract surgery and TECNIS Symfony IOL implantation at the Daqing Oilfield General Hospital from January 2019 to September 2019. Patients were divided into three groups according to the preoperative kappa angle (r): A (0 < r ≤ 0.2), B (0.2 < r ≤ 0.4), and C (r > 0.4). Uncorrected visual acuity was performed preoperatively and at 7 days, 1 month, and 3 months postoperatively. Synthetical optometry, higher-order aberrations, and defocus examinations were performed at 3 months postoperatively. Single-factor analysis of variance and Spearman correlation coefficient were used for data analysis.

Results

The uncorrected visual acuity values of the three groups were significantly improved postoperatively, compared with preoperative values (p < 0.001). Three months postoperatively, the best-corrected visual acuity values of the three groups were 0.11 ± 0.02 logarithm of the minimum angle of resolution (logMAR), 0.09 ± 0.03 logMAR, and 0.11 ± 0.03 logMAR, respectively. Spherical equivalent (SE) values were 0.37 ± 0.08 D, 0.41 ± 0.06 D, and 0.42 ± 0.06 D, respectively. Best-corrected visual acuity and SE did not significantly differ among the three groups (F = 1.254, p = 0.135; F = 0.849, p = 0.228). There was no significant difference in SE between the three groups (F = 1.658, p = 0.312). Moreover, higher-order aberrations did not significantly differ among the three groups (p > 0.05). The kappa angle was negatively correlated with the postoperative DOF (r = −4.341, p = 0.026). Three months postoperatively, 54.55% of patients exhibited DOF ≥ 3 D, while 92.42% of patients exhibited DOF ≥ 2 D. The ranges of DOF in the three groups were 3.18 ± 0.27 D, 2.83 ± 0.80 D, and 2.57 ± 0.89 D, respectively; the difference among the three groups was statistically significant (F = 5.689, p = 0.037).

Conclusion

Most patients achieved full-range vision after TECNIS Symfony IOL implantation, but the DOF narrowed for those with an excessively large kappa angle, which indicates a need for careful selection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data availability

The data used to support the findings of this study are available from the corresponding author upon request.

References

  1. Maxwell WA, Cionni RJ, Lehmann RP, Modi SS (2009) Functional outcomes after bilateral implantation of apodized diffractive aspheric acrylic intraocular lenses with a +3.0 or +4.0 diopter addition power random-ized multicenter clinical study. J Cataract Refract Surg. 35(12):2054–2061

    Article  Google Scholar 

  2. Nishi T, Taketani F, Ueda T, Ogata N (2013) Comparisons of amplitude of pseudoaccommodation with aspheric yellow, spheric yellow, and spheric clear monofocal intraocular lenses. J Clin Ophthalmol Auckl NZ 7:2159–2164

    Article  Google Scholar 

  3. Berdeaux G, Viala M, Roborel de Climens A, Arnould B (2008) Patient-reported benefit of ReSTOR multi-focal intraocular lenses after cataract surgery: results of principal component analysis on clinical trial data. Health Qual Life Outcomes 6:10

    Article  Google Scholar 

  4. Yamauchi T, Tabuchi H, Takase K, Ohsugi H, Ohara Z, Kiuchi Y (2013) Com-parison of visual performance of multifocal intraocular lenses with same material monofocal intraocular lenses. J PLoS One 8(6):e68236

    Article  CAS  Google Scholar 

  5. Ye P-P, Li X, Yao K (2013) Visual outcome and optical quality after bilateral implantation of aspheric diffractive multifocal, aspheric monofocal and spherical monofocal intraocular lenses: a prospective comparison. Int J Ophthalmol 6(3):300–306

    PubMed  PubMed Central  Google Scholar 

  6. Bartol-Puyal FA, Talavero P, Giménez G et al (2017) Reading and quality of life differences between Tecnis ZCB00 monofocal and Tecnis ZMB00 multifocal intraocular lenses. Eur J Ophthalmol 27(4):443–453

    Article  Google Scholar 

  7. Liang JL, Tian F, Zhang H, Teng H (2016) Combination of toric and multifocal intraocular lens implantation in bilateral cataract patients with unilateral astigmatism. Int J Ophthalmol 9(12):1766–1771

    PubMed  PubMed Central  Google Scholar 

  8. El-Maghraby A, Marzouky A, Gazayerli E, Van der Karr M, DeLuca M (1992) Multifocal versus monofocal intraocular lenses. Visual and refractive comparisons. J Cataract Refract Surg. 18(2):147–152

    Article  CAS  Google Scholar 

  9. Vanderschueren I, Zeyen T, Dheer B (1991) Multifocal IOL implantation: 16 cases. Br J Ophthalmol 75(2):88–91

    Article  CAS  Google Scholar 

  10. Sudhir RR, Dey A, Bhattacharrya S, Bahulayan A (2019) AcrySof IQ PanOptix intraocular lens versus extended depth of focus intraocular lens and trifocal intraocular lens: a clinical overview. Asia Pac J Ophthalmol (Phila) 8(4):335–349

    Article  Google Scholar 

  11. Schojai M, Schultz T, Jerke C, Böcker J, Dick HB (2020) Visual performance comparison of 2 extended depth-of-focus intraocular lenses. J Cataract Refract Surg 46(3):388–393

    Article  Google Scholar 

  12. Ruiz-Mesa R, Abengózar-Vela A, Ruiz-Santos M (2018) A comparative study of the visual outcomes between a new trifocal and an extended depth of focus intraocular lens. Eur J Ophthalmol 28(2):182–187

    Article  Google Scholar 

  13. de Medeiros AL, de Araújo Rolim AG, Motta AFP, Ventura BV, Vilar C, Chaves MAPD, Carricondo PC, Hida WT (2017) Comparison of visual outcomes after bilateral implantation of a diffractive trifocal intraocular lens and blended implantation of an extended depth of focus intraocular lens with a diffractive bifocal intraocular lens. Clin Ophthalmol 26(11):1911–1916

    Article  Google Scholar 

  14. Domínguez-Vicent A, Esteve-Taboada JJ, Del Águila-Carrasco AJ, Ferrer-Blasco T, Montés-Micó R (2016) In vitro optical quality comparison between the mini WELL ready progressive multifocal and the TECNIS Symfony. J Graefes Arch Clin Exp Ophthalmol 254(7):1387–1397

    Article  Google Scholar 

  15. Breyer DRH, Kaymak H, Ax T, Kretz FTA, Auffarth GU, Hagen PR (2017) Multifocal intraocular lenses and extended depth of focus intraocular lenses. Asia Pac J Ophthalmol (Phila) 6(4):339–349

    Google Scholar 

  16. Alió J, Plaza-Puche AB, Alió Del Barrio JL, Amat-Peral P, Ortuño V, Yébana P et al (2018) Clinical outcomes with a diffractive trifocal intraocular lens. Eur J Ophthalmol 28(4):419–424

    Article  Google Scholar 

  17. Park CY, Oh SY, Chuck RS (2012) Measurement of angle kappa and centration in refractive surgery. Curr Opin Ophthalmol 23(4):269–275

    Article  Google Scholar 

  18. Garzón N, García-Montero M, López-Artero E, Albarrán-Diego C, Pérez-Cambrodí R, Illarramendi I, Poyales F (2020) Influence of angle κ on visual and refractive outcomes after implantation of a diffractive trifocal intraocular lens. J Cataract Refract Surg 46(5):721–727

    Article  Google Scholar 

  19. Yeo JH, Moon NJ, Lee JK (2017) Measurement of angle kappa using ultrasound biomicroscopy and corneal topography. Korean J Ophthalmol 31(3):257–262

    Article  Google Scholar 

  20. Qi Y, Lin J, Leng L, Zhao G, Wang Q, Li C, Hu L (2018) Role of angle κ in visual quality in patients with a trifocal diffractive intraocular lens. J Cataract Refract Surg 44(8):949–954

    Article  Google Scholar 

  21. Prakash G, Prakash DR, Agarwal A et al (2011) Predictive factor and kappa angle analysis for visual satisfactions in patients with multifocal IOL implantation. J Eye (Lond) 25(9):1187–1193

    Article  CAS  Google Scholar 

  22. Schwiegerling JT (2013) Eye axes and their relevance to alignment of corneal refractive procedures. J Refract Surg 29(8):515–516

    Article  Google Scholar 

  23. Karhanová M, Marešová K, Pluháček F, Mlčák P, Vláčil O, Sín M (2013) Význam úhlu kappa pro centraci multifokálních nitroočních čoček [The importance of angle kappa for centration of multifocal intraocular lenses]. Cesk Slov Oftalmol 69(2):64–68

    PubMed  Google Scholar 

  24. Hashemi H, Khabaz Khoob M, Yazdani K et al (2010) Distribution of angle kappa measurements with Orbscan II in a population-based survey. J Refract Surg 26(12):966–971

    Article  Google Scholar 

  25. Harrer A, Hirnschall N, Tabernero J, Artal P, Draschl P, Maedel S, Findl O (2017) Variability in angle κ and its influence on higher-order aberrations in pseudophakic eyes. J Cataract Refract Surg 43(8):1015–1019

    Article  Google Scholar 

  26. Hikmet B, Afsun S, Nilgun Y et al (2007) The angle kappa in strabismic individuals. J Strabismus 15(4):193–196

    Article  Google Scholar 

  27. Domínguez-Vicent A, Monsálvez-Romín D, Pérez-Vives C et al (2014) Measurement of angle kappa with Orbscan II and Galilei G4: effect of accommodation. J Graefe’s Arch Clin Exp Ophthalmol 252(2):249–255

    Article  Google Scholar 

  28. Bonaque-González S, Jaskulski MT, Carmona-Ballester D, Pareja-Ríos A, Trujillo-Sevilla JM (2021) Influence of angle Kappa on the optimal intraocular orientation of asymmetric multifocal intraocular lenses. J Optom 14(1):78–85

    Article  Google Scholar 

  29. Fu Y, Kou J, Chen D, Wang D, Zhao Y, Hu M, Lin X, Dai Q, Li J, Zhao YE (2019) Influence of angle kappa and angle alpha on visual quality after implantation of multifocal intraocular lenses. J Cataract Refract Surg 45(9):1258–1264

    Article  Google Scholar 

  30. Roop P (2017) Discrepancy in evaluating angle κ. J Cataract Refract Surg 43(7):994–995

    Article  Google Scholar 

  31. Venter JA, Barclay D, Pelouskova M, Bull CE (2014) Initial experience with a new refractive rotationally asymmetric multifocal intraocular lens. J Refract Surg 30(11):770–776

    Article  Google Scholar 

  32. Camps VJ, Miret JJ, García C, Tolosa A, Piñero DP (2018) Simulation of the effect of different presbyopia-correcting intraocular lenses with eyes with previous laser refractive surgery. J Refract Surg 34(4):222–227

    Article  Google Scholar 

  33. Seiler TG, Wegner A, Senfft T, Seiler T (2019) Dissatisfaction after trifocal IOL implantation and its improvement by selective wavefront-guided LASIK. J Refract Surg 35(6):346–352

    Article  Google Scholar 

  34. Savini G, Schiano-Lomoriello D, Balducci N, Barboni P (2018) Visual performance of a new extended depth-of-focus intraocular lens compared to a distance-dominant diffractive multifocal intraocular lens. J Refract Surg 34(4):228–235

    Article  Google Scholar 

  35. Łabuz G, Reus NJ, van den Berg TJ (2016) Comparison of ocular straylight after implantation of multifocal intraocular lenses. J Cataract Refract Surg 42(4):618–625

    Article  Google Scholar 

  36. Alió JL, Plaza-Puche AB, Férnandez-Buenaga R, Pikkel J, Maldonado M (2017) Multifocal intraocular lenses: an overview. Surv Ophthalmol 62(5):611–634

    Article  Google Scholar 

  37. Alió JL, Plaza-Puche AB, Pinero DP, Javaloy J, Ayala MJ (2011) Comparative analysis of the clinical outcomes with 2 multifocal intraocular lens models with rotational asymmetry. J Cataract Refract Surg 37(9):1605–1614

    Article  Google Scholar 

  38. Alfonso JF, Knorz M, Fernández-Vega L, Rincón JL, Suarez E, Titke C et al (2014) Clinical outcomes after bilateral implantation of an apodized +3.0 D toric diffractive multifocal intraocular lens. J Cataract Refract Surg 40(1):51–59

    Article  Google Scholar 

  39. Altun A (2020) Comparing the effect of monofocal and multifocal intraocular lenses on macular surgery. J Ophthalmol 20(2020):1375298

    Google Scholar 

  40. Kim EC, Na KS, Kim HS, Hwang HS (2020) How does the world appear to patients with multifocal intraocular lenses?: a mobile model eye experiment. BMC Ophthalmol 20(1):180

    Article  Google Scholar 

Download references

Acknowledgements

Feng Wang and Ying Su contributed equally to this work and worked as co-correspondence author.

Funding

Scientific research project of Heilongjiang Health and Family Planning Commission (2019-367).

Author information

Authors and Affiliations

Authors

Contributions

Yang Liu performed the operation of the participants. Ying Su, Xuebing Xiao Haitao Du, and Qiang Guo performed ophthalmological evaluation of the participants. Jie Luo and Feng Wang analyzed and interpreted the data, and they are major contributor in writing the manuscript. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Feng Wang or Ying Su.

Ethics declarations

Competing interests

The authors report no conflicts of interest in this manuscript.

Animal research (ethics)

Animal experiments are not covered in this paper.

Consent to participate (ethics)

This study adhered to the tenets of the Declaration of Helsinki. This study was approved by Institutional Review Board and Ethics Committee of the Daqing oilfield general hospital (Project No: ZYAF/SC-07/02.0).

Consent to publish (ethics)

Consent to publish has been obtained from the participant.

Plant reproducibility

Plant experiments are not involved in this paper.

Clinical trials registration

This study is technically mature and does not involve clinical trials.

Gels and blots/image manipulation

The pictures provided by this research institute are in accordance with your requirements.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Luo, J., Liu, Y., Wang, F. et al. Effect of the kappa angle on depth of focus after implantation of the TECNIS Symfony intraocular lens. Int Ophthalmol 41, 2513–2520 (2021). https://doi.org/10.1007/s10792-021-01809-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10792-021-01809-x

Keywords

Navigation