Skip to main content

Advertisement

Log in

Autologous neurosensory retinal transplantation for large refractory idiopathic macular hole

  • Original Paper
  • Published:
International Ophthalmology Aims and scope Submit manuscript

Abstract

Purpose

To investigate the structural and functional reconstruction of the macula after autologous neurosensory retinal-free flap transplantation (ANRFFT) in eyes with large refractory idiopathic macular holes (IMHs).

Methods

Patients with refractory IMHs after multiple surgeries who underwent ANRFFT were retrospectively reviewed. The main outcomes were anatomic closure of MH, change in external limiting membrane (ELM) defect on optical coherence tomography (OCT) and best-corrected visual acuity (BCVA).

Results

A total of 7 patients (4 female and 3 male; mean age 60.6 ± 8.6 years) were included in the study. Mean preoperative largest basal diameter was 1146.7 ± 413.7 µm (range, 653–1768 µm), and mean narrowest inner-opening diameter was 788.9 ± 148.8 µm (range, 644–1100 µm). Mean BCVA (logarithm of the minimum angle of resolution [logMAR]) significantly improved from 1.53 ± 0.16 (range, 1.3–1.7) to 0.89 ± 0.23 (range, 0.6–1.3) at the final follow-up (P < 0.001). OCT revealed complete closure of MH in all eyes. Mean preoperative ELM defect significantly decreased from 1450.3 ± 306.5 µm (range, 1044–1908 mm) to 533.1 ± 399.2 µm (range, 0–1156 µm, P = 0.001). Postoperative complications included retinal detachment (n = 1), cystoid macular edema like changes in the graft (n = 1) and reactive pigment epithelial hyperplasia (n = 1).

Conclusion

Although some postoperative complications did occur, ANRFFT seems to be an effective treatment for large refractory IMHs, and can promote recovery of the outer retinal structure resulting in functional improvement.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Code Availability

Not applicable.

References

  1. McCannel CA, Ensminger JL, Diehl NN, Hodge DN (2009) Population based incidence of macular holes. Ophthalmology 116:1366–3669. https://doi.org/10.1016/j.ophtha.2009.01.052

    Article  PubMed  PubMed Central  Google Scholar 

  2. Rao P, Yonekawa Y, Abbey AM, Shah AA, Wolfe JD, Faia LJ (2017) Prevalence and surgical outcomes of macular hole in eyes with age-related macular degeneration. Ophthalmol Retina 1(2):158–164. https://doi.org/10.1016/j.oret.2016.09.014

    Article  PubMed  Google Scholar 

  3. Liu L, Enkh-Amgalan I, Wang NK et al (2018) Results of macular hole surgery: evaluation based on the international vitreomacular traction study classification. Retina 38:900–906. https://doi.org/10.1097/IAE.0000000000001647

    Article  PubMed  Google Scholar 

  4. Valldeperas X, Wong D (2008) Is it worth reoperating on macular holes? Ophthalmology 115:158–163. https://doi.org/10.1016/j.ophtha.2007.01.039

    Article  PubMed  Google Scholar 

  5. Chen SN, Yang CM (2016) Lens capsular flap transplantation in the management of refractory macular hole from multiple etiologies. Retina 36:163–170. https://doi.org/10.1097/IAE.0000000000000674

    Article  PubMed  Google Scholar 

  6. Charles S, Randolph JC, Neekhra A, Salisbury CD, Littlejohn N, Calzada JI (2013) Arcuate retinotomy for the repair of large macular holes. Ophthalmic Surg Lasers Imaging Retina 44:69–72. https://doi.org/10.3928/23258160-20121221-15

    Article  PubMed  Google Scholar 

  7. Felfeli T, Mandelcorn ED (2019) Macular hole hydrodissection: surgical technique for the treatment of persistent, chronic, and large macular holes. Retina 39:743–752. https://doi.org/10.1097/IAE.0000000000002013

    Article  PubMed  Google Scholar 

  8. Wong R, Howard C, Orobona GD (2018) Retina expansion technique for macular hole apposition report 2: efficacy, closure rate, and risks of a macular detachment technique to close large full-thickness macular holes. Retina 38:660–663. https://doi.org/10.1097/IAE.0000000000001705

    Article  PubMed  Google Scholar 

  9. Morizane Y, Shiraga F, Kimura S, Hosokawa M, Shiode Y, Kawata T, Hosogi M, Shirakata Y, Okanouchi T (2014) Autologous transplantation of the internal limiting membrane for refractory macular holes. Am J Ophthalmol 157(861–869):e1. https://doi.org/10.1016/j.ajo.2013.12.028

    Article  Google Scholar 

  10. Michalewska Z, Michalewski J, Adelman RA, Nawrocki J (2010) Inverted internal limiting membrane flap technique for large macular holes. Ophthalmology 117:2018–2025. https://doi.org/10.1016/j.ophtha.2010.02.011

    Article  PubMed  Google Scholar 

  11. Lai CC, Hwang YS, Liu L, Chen KJ, Wu WC, Chuang LH, Kuo JZ, Chen TL (2009) Blood-assisted internal limiting membrane peeling for macular hole repair. Ophthalmology 116:1525–1530. https://doi.org/10.1016/j.ophtha.2009.02.025

    Article  PubMed  Google Scholar 

  12. Rizzo S, Caporossi T, Tartaro R, Finocchio L, Franco F, Barca F, Giansanti F (2019) A human amniotic membrane plug to promote retinal breaks repair and recurrent macular hole closure. Retina 39(Suppl 1):S95–S103. https://doi.org/10.1097/IAE.0000000000002320

    Article  PubMed  Google Scholar 

  13. Grewal DS, Mahmoud TH (2016) Autologous neurosensory retinal free flap for closure of refractory myopic macular holes. JAMA Ophthalmol 134:229–230. https://doi.org/10.1001/jamaophthalmol.2015.5237

    Article  PubMed  Google Scholar 

  14. Grewal DS, Charles S, Parolini B, Kadonosono K, Mahmoud TH (2019) Autologous retinal transplant for refractory macular holes: multicenter international collaborative study group. Ophthalmology 126(10):1399–1408. https://doi.org/10.1016/j.ophtha.2019.01.027

    Article  PubMed  Google Scholar 

  15. Rahimy E, McCannel CA (2016) Impact of internal limiting membrane peeling on macular hole reopening: a systematic review and meta-analysis. Retina 36(4):679–687. https://doi.org/10.1097/IAE.0000000000000782

    Article  PubMed  Google Scholar 

  16. Al Sabti K, Kumar N, Azad RV (2009) Extended internal limiting membrane peeling in the management of unusually large macular holes. Ophthalmic Surg Lasers Imaging 40:185–187. https://doi.org/10.3928/15428877-20090301-03

    Article  PubMed  Google Scholar 

  17. Dai Y, Dong F, Zhang X, Yang Z (2016) Internal limiting membrane transplantation for unclosed and large macular holes. Graefes Arch Clin Exp Ophthalmol 254(11):2095–2099. https://doi.org/10.1007/s00417-016-3461-4

    Article  CAS  PubMed  Google Scholar 

  18. Pires J, Nadal J, Gomes NL (2017) Internal limiting membrane translocation for refractory macular holes. Br J Ophthalmol 101(3):377–382. https://doi.org/10.1136/bjophthalmol-2015-308299

    Article  PubMed  Google Scholar 

  19. Peng J, Chen C, Jin H, Zhang H, Zhao P (2018) Autologous lens capsular flap transplantation combined with autologous blood application in the management of refractory macular hole. Retina 38(11):2177–2183. https://doi.org/10.1097/IAE.0000000000001830

    Article  PubMed  Google Scholar 

  20. Lee SM, Kwon HJ, Park SW, Lee JE, Byon IS (2018) Microstructural changes in the fovea following autologous internal limiting membrane transplantation surgery for large macular holes. Acta Ophthalmol 96:e406–e408. https://doi.org/10.1111/aos.13504

    Article  PubMed  Google Scholar 

  21. Chang YC, Liu PK, Kao TE, Chen KJ, Chen YH, Chiu WJ, Wu KY, Wu WC (2019) Management of refractory large macular hole with autologous neurosensory retinal free flap transplantation. Retina. https://doi.org/10.1097/IAE.0000000000002734

    Article  PubMed  Google Scholar 

  22. Johnsen EO, Frøen RC, Albert R, Omdal BK, Sarang Z, Berta A, Nicolaissen B, Petrovski G, Moe MC (2012) Activation of neural progenitor cells in human eyes with proliferative vitreoretinopathy. Exp Eye Res 98:28–36. https://doi.org/10.1016/j.exer.2012.03.008

    Article  CAS  PubMed  Google Scholar 

  23. Giannelli SG, Demontis GC, Pertile G, Rama P, Broccoli V (2011) Adult human Muller glia cells are a highly efficient source of rod photoreceptors. Stem Cells 29:344–356. https://doi.org/10.1002/stem.579

    Article  CAS  PubMed  Google Scholar 

  24. Johnsen EO, Froen RC, Olstad OK, Nicolaissen B, Petrovski G, Moe MC, Noer A (2018) Proliferative cells isolated from the adult human peripheral retina only transiently upregulate key retinal markers upon induced differentiation. Curr Eye Res 43:340–349. https://doi.org/10.1080/02713683.2017.1403630

    Article  CAS  PubMed  Google Scholar 

  25. Fischer AJ, Hendrickson A, Reh TA (2001) Immunocytochemical characterization of cysts in the peripheral retina and pars plana of the adult primate. Invest Ophthalmol Vis Sci 42(13):3256–3263

    CAS  PubMed  Google Scholar 

  26. Karl MO, Hayes S, Nelson BR, Tan K, Buckingham B, Reh TA (2008) Stimulation of neural regeneration in the mouse retina. Proc Natl Acad Sci USA 9 105(49):19508–19513. https://doi.org/10.1073/pnas.0807453105

    Article  Google Scholar 

  27. Iraha S, Tu HY, Yamasaki S et al (2018) Establishment of immunodeficient retinal degeneration model mice and functional maturation of human ESC-derived retinal sheets after transplantation. Stem Cell Rep 10(3):1059–1074. https://doi.org/10.1016/j.stemcr.2018.01.032

    Article  CAS  Google Scholar 

  28. Mandai M, Fujii M, Hashiguchi T, Sunagawa GA, Ito SI, Sun J, Kaneko J, Sho J, Yamada C, Takahashi M (2017) iPSC-derived retina transplants improve vision in rd1 end-stage retinal-degeneration mice. Stem Cell Rep 8(1):69–83. https://doi.org/10.1016/j.stemcr.2016.12.008

    Article  Google Scholar 

  29. Tu HY, Watanabe T, Shirai H et al (2019) Medium- to long-term survival and functional examination of human iPSC-derived retinas in rat and primate models of retinal degeneration. EBioMedicine 39:562–574. https://doi.org/10.1016/j.ebiom.2018.11.028

    Article  PubMed  Google Scholar 

  30. Wu AL, Chuang LH, Wang NK, Chen KJ, Liu L, Yeung L, Chen TL, Hwang YS, Wu WC, Lai CC (2018) Refractory macular hole repaired by autologous retinal graft and blood clot. BMC Ophthalmol 18(1):213. https://doi.org/10.1186/s12886-018-0898-8

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Funding

The author has no proprietary or commercial interest in any materials discussed in this article.

Author information

Authors and Affiliations

Authors

Contributions

Design of the study, conduct of the study, analysis and interpretation and literature search were done by the author (KS).

Corresponding author

Correspondence to Kenan Sonmez.

Ethics declarations

Conflict of interest

The author reports no conflict of interest.

Availability of data and material

All data will be available upon request.

Consent to participate

All participants gave written informed consent for participation in the study.

Consent to publication

All participants gave written informed consent for their data to be published.

Ethical approval

The study adhered to the tenets of Declaration of Helsinki and was approved by the Institutional Review Board/Ethics Committee of Ankara Training and Research Hospital, Ankara, Turkey.

Informed Consent

Informed consent was obtained from all individual participants included in the study.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file 1 (MP4 42813 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sonmez, K. Autologous neurosensory retinal transplantation for large refractory idiopathic macular hole. Int Ophthalmol 41, 1415–1425 (2021). https://doi.org/10.1007/s10792-021-01716-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10792-021-01716-1

Keywords

Navigation