Skip to main content

Advertisement

Log in

Dynamic changes and correlation analysis of outer retinal microstructure in macular area of central serous chorioretinopathy patients during restoration period

  • Original Paper
  • Published:
International Ophthalmology Aims and scope Submit manuscript

Abstract

Purpose

To investigate the dynamic changes and possible affecting variables of outer retinal microstructure in macular area of central serous chorioretinopathy (CSC) patients.

Methods

This was a retrospective study. The data of optical coherence tomography (OCT) and autofluoroscopy (AF) of 36 CSC patients admitted to our hospital from February 2012 to February 2013 were included. Dynamic variations and possible correlated variables of central retinal thickness (CRT), subretinal fluid diameter (SRFD), ellipsoid zone (EZ), interdigitation zone (IZ) and/or hyperautofluorescent spot (HAS) were analyzed.

Results

The outer retinal microstructure was gradually restored along with the subretinal fluid absorption during the follow-up. EZ in 94.4% (34/36) and the IZ in 100% (36/36) eyes were completely disappeared at baseline and restored (completed or incomplete) in 88.9% (8/9) and 44.4% (4/9) eyes, respectively, after 6-month follow-up. HAS was evident in 25% eyes (8/32 eyes) at baseline, and the density was initially increased and then declined during follow-up. Correlation analysis demonstrated that the restoration of EZ and IZ was correlated with the restoration period and subretinal fluid absorption.

Conclusion

The outer retinal microstructure was restored during the subretinal fluid absorption in CSC patients, with EZ restored earlier than IZ. The restoration period and the absorption of subretinal fluid were two closely correlated variables of macular microstructure restoration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

All study results have been provided in this manuscript. More data related to the study are available under request.

References

  1. Liew G, Quin G, Gillies M, Fraser-Bell S (2013) Central serous chorioretinopathy: a review of epidemiology and pathophysiology. Clin Exp Ophthalmol 41(2):201–214. https://doi.org/10.1111/j.1442-9071.2012.02848.x

    Article  PubMed  Google Scholar 

  2. Daruich A, Matet A, Dirani A, Bousquet E, Zhao M, Farman N, Jaisser F, Behar-Cohen F (2015) Central serous chorioretinopathy: recent findings and new physiopathology hypothesis. Prog Retinal Eye Res 48:82–118. https://doi.org/10.1016/j.preteyeres.2015.05.003

    Article  CAS  Google Scholar 

  3. Orduña-Azcona J, Pérez-Fernández E, Guadilla AM, De Manuel-Triantafilo S, Modamio L, Gili P (2020) Sensitivity and specificity of choroidal thickness measurement by EDI-OCT for central serous chorioretinopathy diagnosis. Int Ophthalmol. https://doi.org/10.1007/s10792-020-01577-0.Advanceonlinepublication.10.1007/s10792-020-01577-0

    Article  PubMed  Google Scholar 

  4. Zhang B, Chou Y, Zhao X, Yang J, Chen Y (2020) Efficacy of mineralocorticoid receptor antagonist for central serous chorioretinopathy: a meta-analysis. Int Ophthalmol 40(11):2957–2967. https://doi.org/10.1007/s10792-020-01479-1

    Article  PubMed  Google Scholar 

  5. Ambiya V, Khodani M, Goud A, Narayanan R, Tyagi M, Rani PK, Chhablani J (2017) Early focal laser photocoagulation in acute central serous chorioretinopathy: a prospective, randomized study. Ophthalmic Surg, Lasers Imag Retina 48(7):564–571. https://doi.org/10.3928/23258160-20170630-07

    Article  Google Scholar 

  6. Kretz FT, Beger I, Koch F, Nowomiejska K, Auffarth GU, Koss MJ (2015) Randomized clinical trial to compare micropulse photocoagulation versus half-dose verteporfin photodynamic therapy in the treatment of central serous chorioretinopathy. Ophthalmic Surg, Lasers Imag Retina 46(8):837–843. https://doi.org/10.3928/23258160-20150909-08

    Article  Google Scholar 

  7. Kim YK, Ryoo NK, Woo SJ, Park KH (2015) Choroidal thickness changes after photodynamic therapy and recurrence of chronic central serous chorioretinopathy. Am J Ophthalmol 160:72-84e71. https://doi.org/10.1016/j.ajo.2015.04.011

    Article  PubMed  Google Scholar 

  8. Xu Y, Su Y, Li L, Qi H, Zheng H, Chen C (2017) Effect of photodynamic therapy on optical coherence tomography angiography in eyes with chronic central serous chorioretinopathy. Ophthalmologica Journal international d’ophtalmologie International journal of ophthalmology Zeitschrift fur Augenheilkunde 237(3):167–172. https://doi.org/10.1159/000456676

    Article  PubMed  Google Scholar 

  9. van Dijk EHC, Dijkman G, Boon CJF (2017) Photodynamic therapy in chronic central serous chorioretinopathy with subretinal fluid outside the fovea. Graefe’s Arch Clin Exp Ophthalmol 255(10):2029–2035. https://doi.org/10.1007/s00417-017-3720-z

    Article  Google Scholar 

  10. Koytak A, Bayraktar H, Ozdemir H (2020) Fluorescein angiography as a primary guide for reduced-fluence photodynamic therapy for the treatment of chronic central serous chorioretinopathy. Int Ophthalmol 40(7):1807–1813. https://doi.org/10.1007/s10792-020-01350-3

    Article  PubMed  Google Scholar 

  11. Ozdemir I, Eren A, Ersöz G (2019) Outer nuclear layer thickness at the central fovea relation with symptom duration in central serous chorioretinopathy. Int Ophthalmol 39(6):1323–1328. https://doi.org/10.1007/s10792-018-0950-y

    Article  PubMed  Google Scholar 

  12. Vogel RN, Langlo CS, Scoles D, Carroll J, Weinberg DV, Kim JE (2017) High-resolution imaging of intraretinal structures in active and resolved central serous chorioretinopathy. Invest Ophthalmol Vis Sci 58(1):42–49. https://doi.org/10.1167/iovs.16-20351

    Article  PubMed  PubMed Central  Google Scholar 

  13. Zhang P, Wang HY, Zhang ZF, Sun DJ, Zhu JT, Li J, Wang YS (2015) Fundus autofluorescence in central serous chorioretinopathy: association with spectral-domain optical coherence tomography and fluorescein angiography. Int J Ophthalmol 8(5):1003–1007. https://doi.org/10.3980/j.issn.2222-3959.2015.05.27

    Article  PubMed  PubMed Central  Google Scholar 

  14. Liu Y, Li L, Zhu EY, Yuan Y, Wang W, Xu G (2019) A two-year study of diffused retinal pigment epitheliopathy treated with half-dose photodynamic therapy guided by simultaneous angiography and optical coherence tomography. Eye 33(5):737–745. https://doi.org/10.1038/s41433-018-0284-z

    Article  PubMed  Google Scholar 

  15. Ojima Y, Tsujikawa A, Yamashiro K, Ooto S, Tamura H, Yoshimura N (2010) Restoration of outer segments of foveal photoreceptors after resolution of central serous chorioretinopathy. Jpn J Ophthalmol 54(1):55–60. https://doi.org/10.1007/s10384-009-0766-4

    Article  PubMed  Google Scholar 

  16. Kim J, Woo SJ, Ahn J, Park KH, Chung H, Park KH (2012) Long-term temporal changes of peripapillary retinal nerve fiber layer thickness before and after panretinal photocoagulation in severe diabetic retinopathy. Retina 32(10):2052–2060. https://doi.org/10.1097/IAE.0b013e3182562000

    Article  PubMed  Google Scholar 

  17. Fujita K, Shinoda K, Imamura Y, Matsumoto CS, Mizutani Y, Mizota A, Yuzawa M (2012) Correlation of integrity of cone outer segment tips line with retinal sensitivity after half-dose photodynamic therapy for chronic central serous chorioretinopathy. Am J Ophthalmol 154(3):579–585. https://doi.org/10.1016/j.ajo.2012.03.043

    Article  PubMed  Google Scholar 

  18. Kim SK, Kim SW, Oh J, Huh K (2013) Near-infrared and short-wavelength autofluorescence in resolved central serous chorioretinopathy association with outer retinal layer abnormalities. Am J Ophthalmol 156(1):157-164e152. https://doi.org/10.1016/j.ajo.2013.02.016

    Article  PubMed  Google Scholar 

  19. Kim HC, Cho WB, Chung H (2012) Morphologic changes in acute central serous chorioretinopathy using spectral domain optical coherence tomography. Korean J Ophthalmol: KJO 26(5):347–354. https://doi.org/10.3341/kjo.2012.26.5.347

    Article  PubMed  Google Scholar 

  20. Iacono P, Battaglia PM, Papayannis A, La Spina C, Varano M, Bandello F (2015) Acute central serous chorioretinopathy: a correlation study between fundus autofluorescence and spectral-domain OCT. Graefe’s Arch Clin Exp Ophthalmol 253(11):1889–1897. https://doi.org/10.1007/s00417-014-2899-5

    Article  Google Scholar 

  21. Chung CY, Chan YY, Li KKW (2018) Angiographic and tomographic prognostic factors of chronic central serous chorioretinopathy treated with half-dose photodynamic therapy. Ophthalmologica Journal international d’ophtalmologie Int J Ophthalmol Zeitschrift fur Augenheilkunde 240(1):37–44. https://doi.org/10.1159/000484100

    Article  CAS  Google Scholar 

  22. Fujita K, Imamura Y, Shinoda K, Matsumoto CS, Mizutani Y, Hashizume K, Mizota A, Yuzawa M (2015) One-year outcomes with half-dose verteporfin photodynamic therapy for chronic central serous chorioretinopathy. Ophthalmology 122(3):555–561. https://doi.org/10.1016/j.ophtha.2014.09.034

    Article  PubMed  Google Scholar 

  23. Matsumoto H, Sato T, Kishi S (2009) Outer nuclear layer thickness at the fovea determines visual outcomes in resolved central serous chorioretinopathy. Am J Ophthalmol 148(1):105–110. https://doi.org/10.1016/j.ajo.2009.01.018

    Article  PubMed  Google Scholar 

  24. Kim YK, Ryoo NK, Woo SJ, Park KH (2015) Comparison of visual and anatomical outcomes of half-fluence and halfdose photodynamic therapy in eyes with chronic central serous chorioretinopathy. Graefe’s Arch Clin Exp Ophthalmol 253(12):2063–2073. https://doi.org/10.1007/s00417-014-2926-6

    Article  CAS  Google Scholar 

  25. Fujita A, Aoyama Y, Tsuneyoshi S, Sugiura A, Azuma K, Asano-Shimizu K, Soga H, Hashimoto Y, Asaoka R, Inoue T, Obata R (2019) Association between visual function and the integrity of residual ellipsoid zone in resolved central serous chorioretinopathy. Sci Rep 9(1):12433. https://doi.org/10.1038/s41598-019-48825-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. van Rijssen TJ, Mohabati D, Dijkman G, Theelen T, de Jong EK, van Dijk EHC, Boon CJF (2018) Correlation between redefined optical coherence tomography parameters and best-corrected visual acuity in non-resolving central serous chorioretinopathy treated with half-dose photodynamic therapy. PLoS ONE 13(8):e0202549. https://doi.org/10.1371/journal.pone.0202549

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Chappelow AV, Marmor MF (2000) Multifocal electroretinogram abnormalities persist following resolution of central serous chorioretinopathy. Arch Ophthalmol 118(9):1211–1215

    Article  CAS  Google Scholar 

  28. Eandi CM, Ober M, Iranmanesh R, Peiretti E, Yannuzzi LA (2005) Acute central serous chorioretinopathy and fundus autofluorescence. Retina 25(8):989–993

    Article  Google Scholar 

  29. Dinc UA, Tatlipinar S, Yenerel M, Gorgun E, Ciftci F (2011) Fundus autofluorescence in acute and chronic central serous chorioretinopathy. Clini Exp Optom 94(5):452–457. https://doi.org/10.1111/j.1444-0938.2011.00598.x

    Article  Google Scholar 

  30. Pryds A, Larsen M (2013) Foveal function and thickness after verteporfin photodynamic therapy in central serous chorioretinopathy with hyperautofluorescent subretinal deposits. Retina 33(1):128–135. https://doi.org/10.1097/IAE.0b013e3182618bc5

    Article  CAS  PubMed  Google Scholar 

  31. Sahoo NK, Govindhari V, Bedi R, Goud A, Singh R, Wu L, Chhablani J (2020) Subretinal hyperreflective material in central serous chorioretinopathy. Indian J Ophthalmol 68(1):126–129. https://doi.org/10.4103/ijo.IJO_265_19

    Article  PubMed  Google Scholar 

Download references

Funding

This study was supported by National Natural Science Foundation of China (81670866).

Author information

Authors and Affiliations

Authors

Contributions

Chuangxin Huang, Lijun Zhou and Chenjin Jin contributed in study design, data analysis and manuscript writing; Zhen Tian, Xiaojing Zhong and Yajun Gong were involved in data collection and analysis; and Kunbei Lai, Fabao Xu and Longhui Li contributed to data analysis and manuscript writing.

Corresponding author

Correspondence to Chenjin Jin.

Ethics declarations

Conflict of interest

All authors have no financial or other conflicts of interest concerning this study.

Ethical approval

The study has been approved by the Ethics Committee of Zhongshan Ophthalmic Center, Sun Yat-sen University.

Informed consent

Written informed consents for the use of the retrospective data in analysis and publication were waived according to the rules of Ethics Committee of Zhongshan Ophthalmic Center, Sun Yat-sen University.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Chuangxin Huang and Lijun Zhou have been co first-authors

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, C., Zhou, L., Tian, Z. et al. Dynamic changes and correlation analysis of outer retinal microstructure in macular area of central serous chorioretinopathy patients during restoration period. Int Ophthalmol 41, 1191–1201 (2021). https://doi.org/10.1007/s10792-020-01672-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10792-020-01672-2

Keywords

Navigation