Skip to main content

Advertisement

Log in

Optical coherence tomography angiography in juvenile open angle glaucoma: correlation between structure and perfusion

  • Original Paper
  • Published:
International Ophthalmology Aims and scope Submit manuscript

Abstract

Purpose

Juvenile open angle glaucoma (JOAG) is a type of glaucoma that occurs in patients younger than 40 years. Only a few studies have assessed vascular perfusion in JOAG and correlated it with structural damage. The aim of this study is to investigate vascular perfusion in JOAG by optical coherence tomography angiography (OCTA) and correlate it with structural damage, represented by retinal nerve fiber layer (RNFL) thinning.

Methods

This is a cross-sectional observational study of 25 eyes of patients with JOAG. All patients underwent full ocular examination and scanning by OCTA to measure parameters such as RNFL thickness, peripapillary and disk vascular density.

Results

Average superior and inferior RNFL thicknesses were 69.4 (± 22.1) and 70.4 (± 25.6) μm, whereas peripapillary and disk vascular densities were 38.2(± 10), and 39.1(± 12) % and superior and inferior vascular densities were 38.1(± 10.5) and 38.2(± 9.7) %. A strong positive correlation was found between the superior and inferior RNFL thickness and the vascular density of the peripapillary region, the disk and the superior and inferior vascular densities (p < 0.001 for all).

Conclusion

OCTA parameters are strongly correlated with structural damage in JOAG patients. OCTA can serve as a helpful tool in the diagnosis and assessment of progression in JOAG and be utilized as a prognostic indicator, thus filling the defects and gaps present in other methods of assessment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Marx-Gross S, Laubert-Reh D, Schneider A et al (2017) The prevalence of glaucoma in young people. Dtsch Arztebl Int 114(12):204–210

    PubMed  PubMed Central  Google Scholar 

  2. Wan KH, Leung CK (2017) Optical coherence tomography angiography in glaucoma: a mini-review. F1000Research 6:1686. https://doi.org/10.12688/f1000research.11691.1 (F1000 Facult y Rev)

    Article  PubMed  PubMed Central  Google Scholar 

  3. Yarmohammadi A, Zangwill LM, Diniz-Filho A, Suh MH, Manalastas PI, Fatehee N, Yousefi S, Belghith A, Saunders LJ, Medeiros FA, Huang D, Weinreb RN (2016) Optical coherence tomography angiography vessel density in healthy, glaucoma suspect, and glaucoma eyes. Invest Ophthalmol Vis Sci 57:451–459

    Article  Google Scholar 

  4. Geyman LS, Garg RA, Suwan Y, Trivedi V, Krawitz BD, Mo S, Pinhas A, Tantraworasin A, Chui TYP, Ritch R, Rosen RB (2017) Peripapillary perfused capillary density in primary open-angle glaucoma across disease stage: an optical coherence tomography angiography study. Br J Ophthalmol 101:1261–1268

    Article  Google Scholar 

  5. Rao HL, Kadambi SV, Weinreb RN, Puttaiah NK, Pradhan ZS, Rao DAS, Kumar RS, Webers CAB, Shetty R (2017) Diagnostic ability of peripapillary vessel density measurements of optical coherence tomography angiography in primary open-angle and angle-closure glaucoma. Br J Ophthalmol 101:1066–1070

    Article  Google Scholar 

  6. Triolo G, Rabiolo A, Shemonski ND, Fard A, Di Matteo F, Sacconi R, Bettin P, Magazzeni S, Querques G, Vazquez LE, Barboni P, Bandello F (2017) Optical coherence tomography angiography macular and peripapillary vessel perfusion density in healthy subjects, glaucoma suspects, and glaucoma patients. Invest Ophthalmol Vis Sci 58(13):5713–5722

    Article  Google Scholar 

  7. Sehi M, Greenfield DS (2006) Assessment of retinal nerve fiber layer using optical coherence tomography and scanning laser polarimetry in progressive glaucomatous optic neuropathy. Am J Ophthalmol 142(6):1056–1059

    Article  Google Scholar 

  8. Mrugacz M, Bakunowicz-Lazarczyk A (2005) Optical coherence tomography measurement of the retinal nerve fiber layer in normal and juvenile glaucomatous eyes. Ophthalmologica 219(2):80–85

    Article  Google Scholar 

  9. Gupta V, Ov M, Rao A, Sharma A, Sihota R (2012) Long-term structural and functional outcomes of therapy in juvenile-onset primary open-angle glaucoma: a five-year follow-up. Ophthalmologica 228(1):19–25

    Article  Google Scholar 

  10. Ko YC, Liu CJ, Chou JC, Chen MR, Hsu WM, Liu JH (2002) Comparisons of risk factors and visual field changes between juvenile-onset and late-onset primary open-angle glaucoma. Ophthalmologica 216(1):27–32

    Article  Google Scholar 

  11. Johnson AT, Drack AV, Kwitek AE et al (1993) Clinical features and linkage analysis of a family with autosomal dominant juvenile glaucoma. Ophthalmology 100:524–529

    Article  CAS  Google Scholar 

  12. Wiggs JL, Haines JL, Paglinauan C et al (1994) Genetic linkage of autosomal dominant juvenile glaucoma to 1q21-q31 in three affected pedigrees. Genomics 21:299–303

    Article  CAS  Google Scholar 

  13. Aponte EP, Diehl N, Mohney BG (2010) Incidence and clinical characteristics of childhood glaucoma: a population-based study. Arch Ophthalmol 128:478–482

    Article  Google Scholar 

  14. Yanagi M, Kawasaki R, Wang JJ, Wong TY, Franzco JC, Kiuchi Y (2011) Vascular risk factors in glaucoma: a review. Clin and Exp Ophthalmol 39:252–258

    Article  Google Scholar 

  15. Park SC, Kee C (2007) Large diurnal variation of intraocular pressure despite maximal medical treatment in juvenile open angle glaucoma. J Glaucoma 16:164–168

    Article  Google Scholar 

  16. Wang X, Jiang C, Ko T et al (2015) Correlation between optic disc perfusion and glaucomatous severity in patients with open-angle glaucoma: an optical coherence tomography angiography study. Graefes Arch Clin Exp Ophthalmol 253(9):1557–1564

    Article  Google Scholar 

  17. Akil H, Huang AS, Francis BA, Sadda SR, Chopra V (2017) Retinal vessel density from optical coherence tomography angiography to differentiate early glaucoma, pre-perimetric glaucoma and normal eyes. PLoS ONE 12(2):e0170476

    Article  Google Scholar 

  18. Yoshikawa Y, Shoji T, Kanno J, Kimura I, Hangai M, Shinoda K (2018) Optic disc vessel density in nonglaucomatous and glaucomatous eyes: an enhanced-depth imaging optical coherence tomography angiography study. Clin Ophthalmol 12:1113–1119

    Article  Google Scholar 

  19. Shin JW, Lee J, Kwon J, Choi J, Kook MS (2017) Regional vascular density-visual field sensitivity relationship in glaucoma according to disease severity. Br J Ophthalmol 101:1666–1672

    Article  Google Scholar 

  20. Mansoori T, Sivaswamy J, Gamalapati JS, Balakrishna N (2017) Radial peripapillary capillary density measurement using optical coherence tomography angiography in early glaucoma. J Glaucoma 26:438–443

    Article  Google Scholar 

  21. Yarmohammadi A, Zangwill LM, Diniz-Filho A, Saunders LJ, Suh MH, Wu Z, Manalastas PIC, Akagi T, Medeiros FA, Weinreb RN (2017) Peripapillary and macular vessel density in glaucoma patients with single-hemifield visual field defect. Ophthalmol 124(5):709–719

    Article  Google Scholar 

  22. Park JH, Yoo C, Kim YY (2019) Peripapillary vessel density in young patients with open-angle glaucoma: comparison between high-tension and normal-tension glaucoma. Sci Rep 9(1):19160. https://doi.org/10.1038/s41598-019-55707-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Kwun Y, Lee EJ, Han JC, Kee C (2016) Clinical characteristics of juvenile-onset open angle glaucoma. Korean J Ophthalmol 30(2):127–133

    Article  Google Scholar 

  24. Yarmohammadi A, Zangwill LM, Diniz-Filho A, Suh MH, Yousefi S, Saunders LJ et al (2016) Relationship between optical coherence tomography angiography vessel density and severity of visual field loss in glaucoma. Ophthalmol 123:2498–2508

    Article  Google Scholar 

  25. Yarmohammadi A, Zangwill LM, Diniz-Filho A, Suh MH, Manalastas PIC, Fatehee N et al (2016) OCT angiography vessel density in normal, glaucoma suspects and glaucoma eyes: structural and functional associations in the diagnostic innovations in glaucoma study (DIGS). Invest Ophthalmol Vis Sci 57:2958

    Article  Google Scholar 

  26. Hollo G (2016) Vessel density calculated from OCT angiography in 3 peripapillary sectors in normal, ocular hypertensive, and glaucoma eyes. Eur J Ophthalmol 26(3):e42–e45

    Article  Google Scholar 

  27. Hollo G (2019) Peripapillary capillary vessel density progression in advanced glaucoma: a case report. BMC Ophthalmol 19:2

    Article  Google Scholar 

Download references

Acknowledgements

The authors alone are responsible for the content and writing of the paper.

Funding

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rasha M. Eltanamly.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abdelrahman, A.M., Eltanamly, R.M., Elsanabary, Z. et al. Optical coherence tomography angiography in juvenile open angle glaucoma: correlation between structure and perfusion. Int Ophthalmol 41, 883–889 (2021). https://doi.org/10.1007/s10792-020-01643-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10792-020-01643-7

Keywords

Navigation