Skip to main content

Advertisement

Log in

Pentacam corneal densitometry-guided treatment of adenoviral corneal subepithelial infiltrates: a comparative study between transepithelial phototherapeutic keratectomy and topical tacrolimus

  • Original Paper
  • Published:
International Ophthalmology Aims and scope Submit manuscript

Abstract

Purpose

To compare the changes in the measurement of corneal densitometry and total corneal higher-order aberrations (HOAs) between topical tacrolimus and transepithelial phototherapeutic keratectomy (Te-PTK) in the treatment of adenoviral corneal subepithelial infiltrates (SEIs).

Subject and methods

This is an interventional prospective randomized study, including 63 eyes of 35 patients with symptomatic adenoviral corneal SEIs for at least 6 months. All patients underwent previous topical steroid therapy associated with unsatisfactory response and/or complications. Patients were assigned into three groups: (1) Te-PTK group: Te-PTK with MMC 0.02% was performed by a Technolas; Teneo excimer laser; (2) tacrolimus group: tacrolimus 0.03% ointment was applied once daily for 2–6 months; the endpoint of treatment was based on the improvement in the corneal densitometry, BCVA, and OSDI; and (3) control group: no intervention was done. BCVA, corneal densitometry, and total corneal higher-order aberrations (HOAs) evaluation using Pentacam HR were done at the baseline, 1 week, and then 1, 3, 6, and 12 months of the study.

Results

The study population was similar between all groups. The mean follow-up was 12.75 ± 0.9 months. Bilateral corneal SEI was recorded at 80%. At 12-month follow-ups, the mean BCVA improved in both the Te-PTK and tacrolimus groups without significant changes in the control group. The mean corneal densitometry of the anterior, central, and total cornea decreased significantly in the Te-PTK and tacrolimus groups. HO-RMS and total RMS decreased significantly in the Te-PTK and tacrolimus groups. BCVA, corneal densitometry (anterior, central, and total cornea), and corneal aberrations (total coma, total trefoil, HO-RMS, and total RMS) values were significantly better for the Te-PTK and tacrolimus groups than the control group. There were no statistically significant differences between Te-PTK and tacrolimus groups in terms of BCVA, corneal densitometry, corneal HOA, and the persistence of corneal SEIs. The persistence of corneal SEIs was significantly lower in Te-PTK and tacrolimus groups than the control group.

Conclusion

Te-PTK and topical tacrolimus are effective methods for the treatment of adenoviral corneal SEIs improving visual acuity, corneal densitometry, and corneal HOA. The densitometry program of the Pentacam may give an objective guide for the treatment of adenoviral corneal SEIs.

Trial registration: ClinicalTrials.gov ID is NCT04267991.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

All data used to support the findings of this study are available from the corresponding author upon request without an end date.

Abbreviations

EKC:

Epidemic keratoconjunctivitis

SEIs:

Subepithelial infiltrates

MMC:

Mitomycin C (MMC)

Te-PTK:

Transepithelial phototherapeutic keratectomy

GSU:

Grayscale unit

BCVA:

Best corrected visual acuity

Log MAR:

Logarithm of the minimum angle of resolution

OSDI:

Ocular surface disease index

HOA-RMS:

Higher-order aberration root mean square

SA:

Spherical aberration

COT:

Corneal opacity thickness

D:

Diopter

BSS:

Balanced salt solution

References

  1. Jhanji V, Chan TC, Li EY et al (2015) Adenoviral keratoconjunctivitis. Surv Ophthalmol 60(5):435–443

    PubMed  Google Scholar 

  2. Kaufman HE (2011) Adenovirus advances: new diagnostic and therapeutic options. Curr Opin Ophthalmol 22(4):290–293

    PubMed  Google Scholar 

  3. Altan-Yaycioglu R, Sahinoglu-Keskek N, Canan H et al (2019) Effect of diluted povidone iodine in adenoviral keratoconjunctivitis on the rate of subepithelial corneal infiltrates. Int J Ophthalmol 12(9):1420

    PubMed  PubMed Central  Google Scholar 

  4. Okumus S, Coskun E, Tatar MG et al (2012) Cyclosporine a 0.05% eye drops for the treatment of subepithelial infiltrates after epidemic keratoconjunctivitis. BMC Ophthalmol. 12(1):42

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Otri AM, Fares U, Al-Aqaba MA et al (2012) Corneal densitometry as an indicator of corneal health. Ophthalmology 119(3):501–508

    PubMed  Google Scholar 

  6. Muftuoglu IK, Akova YA, Gungor SG (2016) Effect of 0.05% topical cyclosporine for the treatment of symptomatic subepithelial infiltrates due to adenoviral keratoconjunctivitis. Int J Ophthalmol 9(4):634

    PubMed  PubMed Central  Google Scholar 

  7. Kuo IC (2019) Adenoviral keratoconjunctivitis: diagnosis, management, and prevention. Current Ophthalmol Rep 7(2):118–127

    Google Scholar 

  8. Jeng BH, Holsclaw DS (2011) Cyclosporine A 1% eye drop for the treatment of subepithelial infiltrates after adenoviral keratoconjunctivitis. Cornea 30(9):958–961

    PubMed  Google Scholar 

  9. Levinger E, Slomovic A, Sansanayudh W et al (2010) Topical treatment with 1% cyclosporine for subepithelial infiltrates secondary to adenoviral keratoconjunctivitis. Cornea 29(6):638–640

    PubMed  Google Scholar 

  10. Gallego-Pinazo R, Dolz-Marco R, Martínez-Castillo S et al (2013) Update on the principles and novel local and systemic therapies for the treatment of non-infectious uveitis. Inflamm Allergy Drug Targets 12(1):38–45

    CAS  PubMed  Google Scholar 

  11. Shoughy SS (2017) Topical tacrolimus in anterior segment inflammatory disorders. Eye Vis 4(1):7

    Google Scholar 

  12. Fukushima A, Ohashi Y, Ebihara N et al (2014) Therapeutic effects of 0.1% tacrolimus eye drops for refractory allergic ocular diseases with proliferative lesion or corneal involvement. Br J Ophthalmol 98(8):1023–7

    PubMed  PubMed Central  Google Scholar 

  13. Magalhaes OA, Marinho DR, Kwitko S (2013) Topical 0.03% tacrolimus preventing rejection in high-risk corneal transplantation: a cohort study. Br J Ophthalmol 97(11):1395–8

    PubMed  Google Scholar 

  14. Reddy JC, Rapuano CJ, Felipe AF et al (2014) Quality of vision after excimer laser phototherapeutic keratectomy with intra operative mitomycin-C for Salzmann nodular degeneration. Eye Contact Lens 40(4):213–219

    PubMed  Google Scholar 

  15. Lee CS, Lee AY, Akileswaran L et al (2018) Determinants of outcomes of adenoviral keratoconjunctivitis. Ophthalmology 125(9):1344–1353

    PubMed  PubMed Central  Google Scholar 

  16. Ye MJ, Liu CY, Liao RF et al (2016) SMILE and wave front-guided LASIK out-compete other refractive surgeries in ameliorating the induction of high-order aberrations in anterior corneal surface. J Ophthalmol 2016:8702162

    PubMed  PubMed Central  Google Scholar 

  17. Hu Y, Fang L, Guo X et al (2018) Corneal configurations and high-order aberrations in primary congenital glaucoma. J Glaucoma 27(12):1112–1118

    PubMed  Google Scholar 

  18. Elflein HM, Hofherr T, Berisha-Ramadani F et al (2013) measuring corneal clouding in patients suffering from mucopolysaccharidosis with the Pentacam densitometry programme. Br J Ophthalmol 97(7):829–833

    CAS  PubMed  Google Scholar 

  19. Takacs AI, Mihaltz K, Nagy ZZ (2011) Corneal density with the Pentacam after photorefractive keratectomy. J Refract Surg 27(4):269–277

    PubMed  Google Scholar 

  20. Urbaniak D, Seredyka-Burduk M, Błoch W et al (2018) Scheimpflug camera measurement of optical density of the corneal epithelium, stroma, and endothelium in patients with pseudoexfoliation syndrome. Med Sci Monitor Int Med J Experim Clin Res 24:5826

    Google Scholar 

  21. Tekin K, Sekeroglu MA, Kiziltoprak H et al (2017) Corneal densitometry in healthy corneas and its correlation with endothelial morphometry. Cornea 36(11):1336–1342

    PubMed  Google Scholar 

  22. Oliveira CM, Ferreira A, Franco S (2012) Wave front analysis and Zernike polynomial decomposition for evaluation of corneal optical quality. J Cataract Refract Surg 38(2):343–356

    PubMed  Google Scholar 

  23. Tomlinson A, Bron AJ, Korb DR et al (2011) The international workshop on meibomian gland dysfunction: report of the diagnosis subcommittee. Invest Ophthalmol Vis Sci 52(4):2006–2049

    PubMed  PubMed Central  Google Scholar 

  24. Asrar A, Ikram B, Khan H et al (2016) Normal values of corneal optical densitometry using pentacam scheimpflug camera. Adv Ophthalmol Vis Syst 5(1):00142

    Google Scholar 

  25. Dhubhghaill SN, Rozema JJ, Jongenelen S et al (2014) Normative values for corneal densitometry analysis by Scheimpflug optical assessment. Invest Ophthalmol Vis Sci 55(1):162–168

    Google Scholar 

  26. Otri AM, Fares U, Al-Aqaba MA et al (2012) Corneal densitometry as an indicator of corneal health. Ophthalmology 119:501–508

    PubMed  Google Scholar 

  27. Nagpal R, Maharana PK, Roop P et al (2020) Phototherapeutic keratectomy. Surv Ophthalmol 65(1):79–108

    PubMed  Google Scholar 

  28. Reinstein DZ, Archer TJ, Dickeson ZI et al (2014) Transepithelial phototherapeutic keratectomy protocol for treating irregular astigmatism based on population epithelial thickness measurements by artemis very high-frequency digital ultrasound. J Refract Surg 30(6):380–387

    PubMed  Google Scholar 

  29. Labib BA, Minhas BK, Chigbu DI (2020) Management of adenoviral keratoconjunctivitis: challenges and solutions. Clin Ophthalmol 14:837

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Prado SB, Ayora AC, Fernández CL et al (2017) Topical tacrolimus for corneal subepithelial infiltrates secondary to adenoviral keratoconjunctivitis. Cornea 36(9):1102–1105

    Google Scholar 

  31. Kovalyuk N, Kaiserman I, Mimouni M et al (2017) Treatment of adenoviral keratoconjunctivitis with a combination of povidone-iodine 1.0% and dexamethasone 0.1% drops: a clinical prospective controlled randomized study. Acta Ophthalmol 95(8):e686–92

    CAS  PubMed  Google Scholar 

  32. Pihos AM (2013) Epidemic keratoconjunctivitis: a review of current concepts in management. J Optometry 6(2):69–74

    Google Scholar 

  33. Tekin K, Kiziltoprak H, Koc M et al (2019) The effect of corneal infiltrates on densitometry and higher-order aberrations. Clin Exp Optometry 102(2):140–146

    Google Scholar 

  34. Aydin Kurna S, Altun A, Oflaz A et al (2015) Evaluation of the impact of persistent subepithelial corneal infiltrates on the visual performance and corneal optical quality after epidemic keratoconjunctivitis. Acta Ophthalmol 93:377–382

    PubMed  Google Scholar 

  35. Ghanem RC, da Costa Vargas JF, Ghanem VC (2014) Tacrolimus for the treatment of subepithelial infiltrates resistant to topical steroids after adenoviral keratoconjunctivitis. Cornea 33(11):1210–1213

    PubMed  Google Scholar 

  36. Levinger E, Trivizki O, Shachar Y et al (2014) Topical 0.03% tacrolimus for subepithelial infiltrates secondary to adenoviral keratoconjunctivitis. Graefe's Arch Clin Exp Ophthalmol 252(5):811–6

    CAS  Google Scholar 

  37. Khurana RN, Li Y, Tang M et al (2007) High-speed optical coherence tomography of corneal opacities. Ophthalmology 114(7):1278–1285

    PubMed  Google Scholar 

  38. Yildiz BK, Urvasizoglu S, Yildirim Y et al (2017) Changes in higher-order aberrations after phototherapeutic keratectomy for subepithelial corneal infiltrates after epidemic keratoconjunctivitis. Cornea 36(10):1233–1236

    Google Scholar 

  39. Oliveira RF, Ferreira GA, Ghanem VC et al (2020) Transepithelial surface ablation with mitomycin c for the treatment of chronic central corneal scars following adenoviral keratoconjunctivitis. J Refract Surg 36(1):55–61

    PubMed  Google Scholar 

  40. Yamazaki ES, Ferraz CA, Hazarbassanov RM et al (2011) Phototherapeutic keratectomy for the treatment of corneal opacities after epidemic keratoconjunctivitis. Am J Ophthalmol 151(1):35–43

    PubMed  Google Scholar 

  41. Mallias IA, Mylova P, Mouzaka A et al (2016) Phototherapeutic keratectomy for the treatment of dense subepithelial infiltrates after epidemic keratoconjunctivitis. Ophthalmol J 1(4):147–150

    Google Scholar 

  42. Medeiros CS, Marino GK, Santhiago MR et al (2018) The corneal basement membranes and stromal fibrosis. Invest Ophthalmol VisSci 59(10):4044–4053

    CAS  Google Scholar 

  43. Ghanem RC, Ghanem VC, Ghanem EA et al (2012) Corneal wavefront-guided photorefractive keratectomy with mitomycin-C for hyperopia after radial keratotomy: two-year follow-up. J Cataract Refract Surg 38(4):595–606. https://doi.org/10.1016/j.jcrs.2011.11.032

    Article  PubMed  Google Scholar 

  44. Alevi D, Barsam A, Kruh J et al (2012) Photorefractive keratectomy with mitomycin-C for the combined treatment of myopia and subepithelial infiltrates after epidemic keratoconjunctivitis. J Cataract Refract Surg 38(6):1028–1033

    PubMed  Google Scholar 

  45. Reddy JC, Rapuano CJ, Felipe AF et al (2014) Quality of vision after excimer laser phototherapeutic keratectomy with intraoperative mitomycin-C for Salzmann nodular degeneration. Eye Contact Lens 40:213–219

    PubMed  Google Scholar 

  46. Sakata N, Tokunaga T, Miyata K et al (2007) Changes in contrast sensitivity function and ocular higher order aberration by conventional myopic photorefractive keratectomy. Jpn J Ophthalmol 51(5):347–352

    PubMed  Google Scholar 

Download references

Acknowledgements

No financial support was received for this submission. No substantial contribution was provided for this submission.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tarek Roshdy Elhamaky.

Ethics declarations

Conflict of interest

The author declares no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Elhamaky, T.R. Pentacam corneal densitometry-guided treatment of adenoviral corneal subepithelial infiltrates: a comparative study between transepithelial phototherapeutic keratectomy and topical tacrolimus. Int Ophthalmol 41, 67–77 (2021). https://doi.org/10.1007/s10792-020-01553-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10792-020-01553-8

Keywords

Navigation