Skip to main content

Advertisement

Log in

Pachychoroid neovasculopathy: a type-1 choroidal neovascularization belonging to the pachychoroid spectrum—pathogenesis, imaging and available treatment options

  • Review
  • Published:
International Ophthalmology Aims and scope Submit manuscript

Abstract

Purpose

The purpose of this paper is to provide a meaningful literature review about the epidemiology, pathogenesis, imaging and treatment of pachychoroid neovasculopathy (PNV).

Methods

A computerized search from inception up to December 2019 of the online electronic database PubMed was performed using the following search string: “pachychoroid neovasculopathy”. The reference list in each article was scanned for additional relevant publications.

Results

PNV is a type-1 choroidal neovascularization, overlying focal areas of choroidal thickening and dilated choroidal vessels. It can develop in patients affected by pachychoroid pigment epitheliopathy or chronic central serous chorioretinopathy. The absence of drusen, the presence of pachydrusen, younger age of onset and choroidal thickening distinguish it from neovascular age-related macular degeneration (AMD). PNV incidence and prevalence data are lacking. Its pathophysiology is not fully understood, but angiogenic mechanisms involved in neovascular AMD may be different from those in PNV. Due to optical coherence tomography (OCT) improvements, PNV can be diagnosed more easily than before. In particular, PNV shows a shallow pigment epithelium detachment with an undulating retinal pigment epithelium over a subfoveal choroidal thickening, associated with vein enlargement in Haller’s layer (named pachyvessels) and choriocapillaris thinning. On OCT angiography, PNV reveals tangled hyper-reflective filamentous neovessels in the choriocapillaris itself. The current first-line PNV treatment is intravitreal anti-VEGF (vascular endothelial growth factor) injections with a treat-and-extend regimen. In particular, aflibercept shows a higher rate of fluid absorption than others. In the case of fluid recurrence or persistence, photodynamic therapy is a valid alternative.

Conclusion

Ongoing research into pathophysiology and imaging improvements may be helpful in defining prognostic criteria and stratifying patient risk, allowing responsible monitoring and management of PNV.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Pang CE, Freund KB (2015) Pachychoroid neovasculopathy. Retina 35(1):1–9. https://doi.org/10.1097/IAE.0000000000000331

    Article  CAS  PubMed  Google Scholar 

  2. Cheung CMG, Lee WK, Koizumi H, Dansingani K, Lai TYY, Freund KB (2019) Pachychoroid disease. Eye (Lond) 33(1):14–33. https://doi.org/10.1038/s41433-018-0158-4

    Article  Google Scholar 

  3. Spaide RF (2018) Disease expression in nonexudative age-related macular degeneration varies with choroidal thickness. Retina 38(4):708–716. https://doi.org/10.1097/IAE.0000000000001689

    Article  PubMed  Google Scholar 

  4. Akkaya S (2018) Spectrum of pachychoroid diseases. Int Ophthalmol 38(5):2239–2246. https://doi.org/10.1007/s10792-017-0666-4

    Article  PubMed  Google Scholar 

  5. Gupta MP, Rusu I, Seidman C, Orlin A, D'Amico DJ, Kiss S (2016) Pachychoroid neovasculopathy in extramacular choroidal neovascularization. Clin Ophthalmol 10:1275–1282. https://doi.org/10.2147/OPTH.S105080

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Miyake M, Ooto S, Yamashiro K, Takahashi A, Yoshikawa M, Akagi-Kurashige Y, Ueda-Arakawa N, Oishi A, Nakanishi H, Tamura H, Tsujikawa A, Yoshimura N (2015) Pachychoroid neovasculopathy and age-related macular degeneration. Sci Rep 5:16204. https://doi.org/10.1038/srep16204

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Hosoda Y, Yoshikawa M, Miyake M, Tabara Y, Ahn J, Woo SJ, Honda S, Sakurada Y, Shiragami C, Nakanishi H, Oishi A, Ooto S, Miki A, Nagahama Study G, Iida T, Iijima H, Nakamura M, Khor CC, Wong TY, Song K, Park KH, Yamada R, Matsuda F, Tsujikawa A, Yamashiro K (2018) CFH and VIPR2 as susceptibility loci in choroidal thickness and pachychoroid disease central serous chorioretinopathy. Proc Natl Acad Sci USA 115(24):6261–6266. https://doi.org/10.1073/pnas.1802212115

    Article  CAS  PubMed  Google Scholar 

  8. Dansingani KK, Perlee LT, Hamon S, Lee M, Shah VP, Spaide RF, Sorenson J, Klancnik JM Jr, Yannuzzi LA, Barbazetto IA, Cooney MJ, Engelbert M, Chen C, Hewitt AW, Freund KB (2016) Risk alleles associated with neovascularization in a pachychoroid phenotype. Ophthalmology 123(12):2628–2630. https://doi.org/10.1016/j.ophtha.2016.06.060

    Article  PubMed  Google Scholar 

  9. Balaratnasingam C, Lee WK, Koizumi H, Dansingani K, Inoue M, Freund KB (2016) Polypoidal choroidal vasculopathy: a distinct disease or manifestation of many? Retina 36(1):1–8. https://doi.org/10.1097/IAE.0000000000000774

    Article  PubMed  Google Scholar 

  10. Baek J, Lee JH, Chung BJ, Lee K, Lee WK (2019) Choroidal morphology under pachydrusen. Clin Exp Ophthalmol 47(4):498–504. https://doi.org/10.1111/ceo.13438

    Article  PubMed  Google Scholar 

  11. Arya M, Sabrosa AS, Duker JS, Waheed NK (2018) Choriocapillaris changes in dry age-related macular degeneration and geographic atrophy: a review. Eye Vis (Lond) 5:22. https://doi.org/10.1186/s40662-018-0118-x

    Article  Google Scholar 

  12. Matsumoto H, Kishi S, Mukai R, Akiyama H (2019) Remodeling of macular vortex veins in pachychoroid neovasculopathy. Sci Rep 9(1):14689. https://doi.org/10.1038/s41598-019-51268-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Hayreh SS, Baines JA (1973) Occlusion of the vortex veins. An experimental study. Br J Ophthalmol 57(4):217–238. https://doi.org/10.1136/bjo.57.4.217

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Takahashi K, Kishi S, Muraoka K, Tanaka T, Shimizu K (1998) Radiation choroidopathy with remodeling of the choroidal venous system. Am J Ophthalmol 125(3):367–373. https://doi.org/10.1016/s0002-9394(99)80148-2

    Article  CAS  PubMed  Google Scholar 

  15. Hata M, Yamashiro K, Ooto S, Oishi A, Tamura H, Miyata M, Ueda-Arakawa N, Takahashi A, Tsujikawa A, Yoshimura N (2017) Intraocular vascular endothelial growth factor levels in pachychoroid neovasculopathy and neovascular age-related macular degeneration. Invest Ophthalmol Vis Sci 58(1):292–298. https://doi.org/10.1167/iovs.16-20967

    Article  CAS  PubMed  Google Scholar 

  16. Terao N, Koizumi H, Kojima K, Yamagishi T, Yamamoto Y, Yoshii K, Kitazawa K, Hiraga A, Toda M, Kinoshita S, Sotozono C, Hamuro J (2018) Distinct aqueous humour cytokine profiles of patients with pachychoroid neovasculopathy and neovascular age-related macular degeneration. Sci Rep 8(1):10520. https://doi.org/10.1038/s41598-018-28484-w

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Sonoda S, Sakamoto T, Yamashita T, Uchino E, Kawano H, Yoshihara N, Terasaki H, Shirasawa M, Tomita M, Ishibashi T (2015) Luminal and stromal areas of choroid determined by binarization method of optical coherence tomographic images. Am J Ophthalmol 159(6):1123–1131. https://doi.org/10.1016/j.ajo.2015.03.005

    Article  PubMed  Google Scholar 

  18. Azuma K, Tan X, Asano S, Shimizu K, Ogawa A, Inoue T, Murata H, Asaoka R, Obata R (2019) The association of choroidal structure and its response to anti-VEGF treatment with the short-time outcome in pachychoroid neovasculopathy. PLoS ONE 14(2):e0212055. https://doi.org/10.1371/journal.pone.0212055

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Inhoffen W, Ziemssen F, Bartz-Schmidt KU (2012) Chronic central serous chorioretinopathy (cCSC): differential diagnosis to choroidal neovascularisation (CNV) secondary to age-related macular degeneration (AMD). Klin Monbl Augenheilkd 229(9):889–896. https://doi.org/10.1055/s-0032-1315077

    Article  CAS  PubMed  Google Scholar 

  20. Pang CE, Freund KB (2014) Pachychoroid pigment epitheliopathy may masquerade as acute retinal pigment epitheliitis. Invest Ophthalmol Vis Sci 55(8):5252. https://doi.org/10.1167/iovs.14-14959

    Article  PubMed  Google Scholar 

  21. Prunte C, Flammer J (1996) Choroidal capillary and venous congestion in central serous chorioretinopathy. Am J Ophthalmol 121(1):26–34. https://doi.org/10.1016/s0002-9394(14)70531-8

    Article  CAS  PubMed  Google Scholar 

  22. Kitaya N, Nagaoka T, Hikichi T, Sugawara R, Fukui K, Ishiko S, Yoshida A (2003) Features of abnormal choroidal circulation in central serous chorioretinopathy. Br J Ophthalmol 87(6):709–712. https://doi.org/10.1136/bjo.87.6.709

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Ersoz MG, Arf S, Hocaoglu M, Sayman Muslubas I, Karacorlu M (2018) Indocyanine green angiography of pachychoroid pigment epitheliopathy. Retina 38(9):1668–1674. https://doi.org/10.1097/IAE.0000000000001773

    Article  PubMed  Google Scholar 

  24. Biçer Ö, Batıoğlu F, Demirel S, Özmert E (2018) Multimodal imaging in pachychoroid neovasculopathy: a case report. Turk J Ophthalmol 48(5):262–266. https://doi.org/10.4274/tjo.89166

    Article  PubMed  PubMed Central  Google Scholar 

  25. Querques G, Srour M, Massamba N, Georges A, Ben Moussa N, Rafaeli O, Souied EH (2013) Functional characterization and multimodal imaging of treatment-naive "quiescent" choroidal neovascularization. Invest Ophthalmol Vis Sci 54(10):6886–6892. https://doi.org/10.1167/iovs.13-11665

    Article  PubMed  Google Scholar 

  26. Carnevali A, Capuano V, Sacconi R, Querques L, Marchese A, Rabiolo A, Souied E, Scorcia V, Bandello F, Querques G (2017) OCT angiography of treatment-naive quiescent choroidal neovascularization in pachychoroid neovasculopathy. Ophthalmol Retina 1(4):328–332. https://doi.org/10.1016/j.oret.2017.01.003

    Article  PubMed  Google Scholar 

  27. Chhablani J, Mandadi SKR (2019) Commentary: double-layer sign" on spectral domain optical coherence tomography in pachychoroid spectrum disease. Indian J Ophthalmol 67(1):171. https://doi.org/10.4103/ijo.IJO_1456_18

    Article  PubMed  PubMed Central  Google Scholar 

  28. Sato T, Kishi S, Watanabe G, Matsumoto H, Mukai R (2007) Tomographic features of branching vascular networks in polypoidal choroidal vasculopathy. Retina 27(5):589–594. https://doi.org/10.1097/01.iae.0000249386.63482.05

    Article  PubMed  Google Scholar 

  29. Lehmann M, Bousquet E, Beydoun T, Behar-Cohen F (2015) Pachychoroid: an inherited condition? Retina 35(1):10–16. https://doi.org/10.1097/IAE.0000000000000287

    Article  PubMed  Google Scholar 

  30. Dansingani KK, Balaratnasingam C, Naysan J, Freund KB (2016) En face imaging of pachychoroid spectrum disorders with swept-source optical coherence tomography. Retina 36(3):499–516. https://doi.org/10.1097/IAE.0000000000000742

    Article  PubMed  Google Scholar 

  31. Lee WK, Baek J, Dansingani KK, Lee JH, Freund KB (2016) Choroidal morphology in eyes with polypoidal choroidal vasculopathy and normal or subnormal subfoveal choroidal thickness. Retina 36(Suppl 1):S73–S82. https://doi.org/10.1097/IAE.0000000000001346

    Article  PubMed  Google Scholar 

  32. Ferrara D, Mohler KJ, Waheed N, Adhi M, Liu JJ, Grulkowski I, Kraus MF, Baumal C, Hornegger J, Fujimoto JG, Duker JS (2014) En face enhanced-depth swept-source optical coherence tomography features of chronic central serous chorioretinopathy. Ophthalmology 121(3):719–726. https://doi.org/10.1016/j.ophtha.2013.10.014

    Article  PubMed  Google Scholar 

  33. Lee M, Lee H, Kim HC, Chung H (2018) Changes in stromal and luminal areas of the choroid in pachychoroid diseases: insights into the pathophysiology of pachychoroid diseases. Invest Ophthalmol Vis Sci 59(12):4896–4908. https://doi.org/10.1167/iovs.18-25018

    Article  CAS  PubMed  Google Scholar 

  34. Azar G, Wolff B, Mauget-Faÿsse M, Rispoli M, Savastano M-C, Lumbroso B (2017) Pachychoroid neovasculopathy: aspect on optical coherence tomography angiography. Acta Ophthalmol 95:421–427. https://doi.org/10.1111/aos.13221

    Article  PubMed  Google Scholar 

  35. Bonini Filho MA, de Carlo TE, Ferrara D, Adhi M, Baumal CR, Witkin AJ, Reichel E, Duker JS, Waheed NK (2015) Association of choroidal neovascularization and central serous chorioretinopathy with optical coherence tomography angiography. JAMA Ophthalmol 133(8):899–906. https://doi.org/10.1001/jamaophthalmol.2015.1320

    Article  PubMed  Google Scholar 

  36. Dansingani KK, Balaratnasingam C, Klufas MA, Sarraf D, Freund KB (2015) Optical coherence tomography angiography of shallow irregular pigment epithelial detachments in pachychoroid spectrum disease. Am J Ophthalmol 160(6):1243–1254. https://doi.org/10.1016/j.ajo.2015.08.028

    Article  PubMed  Google Scholar 

  37. Bousquet E, Bonnin S, Mrejen S, Krivosic V, Tadayoni R, Gaudric A (2018) Optical coherence tomography angiography of flat irregular pigment epithelium detachment in chronic central serous chorioretinopathy. Retina 38(3):629–638. https://doi.org/10.1097/IAE.0000000000001580

    Article  PubMed  Google Scholar 

  38. Hwang H, Kim JY, Kim KT, Chae JB, Kim DY (2019) Flat irregular pigment epithelium detachment in central serous chorioretinopathy: a form of pachychoroid neovasculopathy? Retina. https://doi.org/10.1097/IAE.0000000000002662

    Article  PubMed  PubMed Central  Google Scholar 

  39. Arf S, Sayman Muslubas I, Hocaoglu M, Ersoz MG, Karacorlu M (2020) Features of neovascularization in pachychoroid neovasculopathy compared with type 1 neovascular age-related macular degeneration on optical coherence tomography angiography. Jpn J Ophthalmol 64(3):257–264. https://doi.org/10.1007/s10384-020-00730-7

    Article  CAS  PubMed  Google Scholar 

  40. Koizumi H, Kano M, Yamamoto A, Saito M, Maruko I, Kawasaki R, Sekiryu T, Okada A, Iida T (2015) Short-term changes in choroidal thickness after aflibercept therapy for neovascular age-related macular degeneration. Am J Ophthalmol 159(4):627–633. https://doi.org/10.1016/j.ajo.2014.12.025

    Article  CAS  PubMed  Google Scholar 

  41. Koizumi H, Kano M, Yamamoto A, Saito M, Maruko I, Sekiryu T, Okada A, Iida T (2016) Subfoveal choroidal thickness during aflibercept therapy for neovascular age-related macular degeneration: twelve-month results. Ophthalmology 123(3):617–624. https://doi.org/10.1016/j.ophtha.2015.10.039

    Article  PubMed  Google Scholar 

  42. Padron-Perez N, Arias L, Rubio M, Lorenzo D, Garcia-Bru P, Catala-Mora J, Caminal JM (2018) Changes in choroidal thickness after intravitreal injection of anti-vascular endothelial growth factor in pachychoroid neovasculopathy. Invest Ophthalmol Vis Sci 59(2):1119–1124. https://doi.org/10.1167/iovs.17-22144

    Article  CAS  PubMed  Google Scholar 

  43. Matsumoto H, Hiroe T, Morimoto M, Mimura K, Ito A, Akiyama H (2018) Efficacy of treat-and-extend regimen with aflibercept for pachychoroid neovasculopathy and Type 1 neovascular age-related macular degeneration. Jpn J Ophthalmol 62(2):144–150. https://doi.org/10.1007/s10384-018-0562-0

    Article  CAS  PubMed  Google Scholar 

  44. Cho HJ, Jung SH, Cho S, Han JO, Park S, Kim JW (2019) Intravitreal anti-vascular endothelial growth factor treatment for pachychoroid neovasculopathy. J Ocul Pharmacol Ther 35(3):174–181. https://doi.org/10.1089/jop.2018.0107

    Article  CAS  PubMed  Google Scholar 

  45. Jung BJ, Kim JY, Lee JH, Baek J, Lee K, Lee WK (2019) Intravitreal aflibercept and ranibizumab for pachychoroid neovasculopathy. Sci Rep 9(1):2055. https://doi.org/10.1038/s41598-019-38504-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Lee JH, Lee WK (2016) One-year results of adjunctive photodynamic therapy for type 1 neovascularization associated with thickened choroid. Retina 36(5):889–895. https://doi.org/10.1097/IAE.0000000000000809

    Article  CAS  PubMed  Google Scholar 

  47. Roy R, Saurabh K, Shah D, Goel S (2019) Treatment outcomes of pachychoroid neovasculopathy with photodynamic therapy and anti-vascular endothelial growth factor. Indian J Ophthalmol 67(10):1678–1683. https://doi.org/10.4103/ijo.IJO_1481_18

    Article  PubMed  PubMed Central  Google Scholar 

  48. Roca JA, Wu L, Fromow-Guerra J, Rodriguez FJ, Berrocal MH, Rojas S, Lima LH, Gallego-Pinazo R, Chhablani J, Arevalo JF, Lozano-Rechy D, Serrano M (2018) Yellow (577 nm) micropulse laser versus half-dose verteporfin photodynamic therapy in eyes with chronic central serous chorioretinopathy: results of the Pan-American Collaborative Retina Study (PACORES) Group. Br J Ophthalmol 102(12):1696–1700. https://doi.org/10.1136/bjophthalmol-2017-311291

    Article  PubMed  Google Scholar 

  49. van Dijk EHC, Fauser S, Breukink MB, Blanco-Garavito R, Groenewoud JMM, Keunen JEE, Peters PJH, Dijkman G, Souied EH, MacLaren RE, Querques G, Downes SM, Hoyng CB, Boon CJF (2018) Half-dose photodynamic therapy versus high-density subthreshold micropulse laser treatment in patients with chronic central serous chorioretinopathy: the place trial. Ophthalmology 125(10):1547–1555. https://doi.org/10.1016/j.ophtha.2018.04.021

    Article  PubMed  Google Scholar 

  50. Scholz P, Altay L, Fauser S (2017) A review of subthreshold micropulse laser for treatment of macular disorders. Adv Ther 34(7):1528–1555. https://doi.org/10.1007/s12325-017-0559-y

    Article  PubMed  PubMed Central  Google Scholar 

  51. Li Z, Song Y, Chen X, Chen Z, Ding Q (2015) Biological modulation of mouse RPE cells in response to subthreshold diode micropulse laser treatment. Cell Biochem Biophys 73(2):545–552. https://doi.org/10.1007/s12013-015-0675-8

    Article  CAS  PubMed  Google Scholar 

  52. Midena E, Bini S, Martini F, Enrica C, Pilotto E, Micera A, Esposito G, Vujosevic S (2020) Changes of aqueous humor muller cells' biomarkers in human patients affected by diabetic macular edema after subthreshold micropulse laser treatment. Retina 40(1):126–134. https://doi.org/10.1097/IAE.0000000000002356

    Article  PubMed  Google Scholar 

  53. De Cilla S, Vezzola D, Farruggio S, Vujosevic S, Clemente N, Raina G, Mary D, Casini G, Rossetti L, Avagliano L, Martinelli C, Bulfamante G, Grossini E (2019) The subthreshold micropulse laser treatment of the retina restores the oxidant/antioxidant balance and counteracts programmed forms of cell death in the mice eyes. Acta Ophthalmol 97(4):e559–e567. https://doi.org/10.1111/aos.13995

    Article  CAS  PubMed  Google Scholar 

  54. Gawecki M (2019) Micropulse laser treatment of retinal diseases. J Clin Med. https://doi.org/10.3390/jcm8020242

    Article  PubMed  PubMed Central  Google Scholar 

  55. Macular Photocoagulation Study Group (1995) The influence of treatment extent on the visual acuity of eyes treated with krypton laser for juxtafoveal choroidal neovascularization. Arch Ophthalmol 113(2):190–194. https://doi.org/10.1001/archopht.1995.01100020074032

    Article  Google Scholar 

  56. Hussain N, Khanna R, Hussain A, Das T (2006) Transpupillary thermotherapy for chronic central serous chorioretinopathy. Graefes Arch Clin Exp Ophthalmol 244(8):1045–1051. https://doi.org/10.1007/s00417-005-0175-4

    Article  PubMed  Google Scholar 

  57. Manayath GJ, Karandikar SS, Narendran S, Kumarswamy KA, Saravanan VR, Morris RJ, Venkatapathy N (2017) Low fluence photodynamic therapy versus graded subthreshold transpupillary thermotherapy for chronic central serous chorioretinopathy: results from a prospective study. Ophthalmic Surg Lasers Imaging Retina 48(4):334–338. https://doi.org/10.3928/23258160-20170329-08

    Article  PubMed  Google Scholar 

  58. Sartini F, Figus M, Nardi M, Casini G, Posarelli C (2019) Non-resolving, recurrent and chronic central serous chorioretinopathy: available treatment options. Eye (Lond) 33(7):1035–1043. https://doi.org/10.1038/s41433-019-0381-7

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michele Figus.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Informed consent

Informed consent was not applicable in this study.

Human and animal rights

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sartini, F., Figus, M., Casini, G. et al. Pachychoroid neovasculopathy: a type-1 choroidal neovascularization belonging to the pachychoroid spectrum—pathogenesis, imaging and available treatment options. Int Ophthalmol 40, 3577–3589 (2020). https://doi.org/10.1007/s10792-020-01522-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10792-020-01522-1

Keywords

Navigation