Skip to main content

Advertisement

Log in

Comparison of two measurements for the lower lid margin thickness: vernier micrometer and anterior segment optical coherence tomography

  • Original Paper
  • Published:
International Ophthalmology Aims and scope Submit manuscript

Abstract

Purpose

To investigate the reliability of using anterior segment optical coherence tomography (AS-OCT) to measure the lower lid margin thickness (LLMT) from the posterior lash line to the Marx’s line by comparing with a vernier micrometer.

Methods

This was a prospective, single-center, diagnostic test study. Sixty volunteers aged between 20 and 79 without ocular diseases were recruited. A vernier micrometer and AS-OCT were, respectively, used to measure the same lid margin thickness at the central lower lid.

Results

The mean age of volunteers was 39.1 ± 13.7 years. The LLMT in 60 subjects (25 males and 35 females) measured by a vernier micrometer and AS-OCT was 1.03 ± 0.25 mm and 0.82 ± 0.21 mm, respectively. There was a significant difference between two measurements (P < 0.001). In addition, intraclass correlation coefficient (ICC) was engaged to evaluate the reliability and agreement of two measurements (ICC = 0.83). Bland–Altman plots demonstrated that 57 of 60 spots were within 95% limits of agreement. No adverse events were detected in all subjects after the measurements.

Conclusion

Although the LLMT measured by AS-OCT was less than that measured by a vernier micrometer, AS-OCT providing quantitative measurements and imaging data was also seemed to be a reliable method with a good agreement. It could be a substitute for a vernier micrometer in clinical practice in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Nelson JD, Shimazaki J, Benitez-del-Castillo JM et al (2011) The international workshop on meibomian gland dysfunction:report of the definition and classification subcommittee. Invest Ophthalmol Vis Sci 52:1930–1937

    PubMed  PubMed Central  Google Scholar 

  2. Foulks GN, Bron AJ (2003) Meibomian gland dysfunction: a clinical scheme for description, diagnosis, classification, and grading. Ocul Surf 1:107–126

    PubMed  Google Scholar 

  3. Bron AJ, Benjamin L, Snibson GR (1991) Meibomian gland disease. Classification and grading of lid changes. Eye 5:395–411

    PubMed  Google Scholar 

  4. Tomlinson A, Bron AJ, Korb DR et al (2011) The international workshop on meibomian gland dysfunction: report of the diagnosis subcommittee. Invest Ophthalmol Vis Sci 52:2006–2049

    PubMed  PubMed Central  Google Scholar 

  5. Asia Dry Eye Association China Branch, Ocular Surface and Tear Disease Group of Ophthalmology Specialized Committee of the Cross-Strait Medical Exchange Association (2017) Chinese expert consensus on the diagnosis and treatment of meibomian gland dysfunction. Zhonghua Yan Ke Za Zhi 53:657–661 (inChinese)

    Google Scholar 

  6. Shimazaki J, Sakata M, Tsubota K (1995) Ocular surface changes and discomfort in patients with meibomian gland dysfunction. Arch Ophthalmol 113:1266–1270

    CAS  PubMed  Google Scholar 

  7. Goto E, Monden Y, Takano Y et al (2002) Treatment of non-inflamed obstructive meibomian gland dysfunction by an infrared warm compression device. Br J Ophthalmol 86:1403–1407

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Nichols KK (2011) The international workshop on meibomian gland dysfunction: introduction. Invest Ophthalmol Vis Sci 52:1917–1921

    PubMed  PubMed Central  Google Scholar 

  9. Lin PY, Tsai SY, Cheng CY et al (2003) Prevalence of dry eye among an elderly Chinese population in Taiwan: the Shihpai Eye Study. Ophthalmology 110:1096–1101

    PubMed  Google Scholar 

  10. Lekhanont K, Rojanaporn D, Chuck RS et al (2006) Prevalence of dry eye in Bangkok, Thailand. Cornea 25:1162–1167

    PubMed  Google Scholar 

  11. Jie Y, Xu L, Wu YY et al (2009) Prevalence of dry eye among adult Chinese in the Beijing Eye Study. Eye 23:688–693

    CAS  PubMed  Google Scholar 

  12. Den S, Shimizu K, Ikeda T et al (2006) Association between meibomian gland changes and aging, sex, or tear function. Cornea 25:651–655

    PubMed  Google Scholar 

  13. Arita R, Itoh K, Inoue K et al (2008) Noncontact infrared meibography to document age-related changes of the meibomian glands in a normal population. Ophthalmology 115:911–915

    PubMed  Google Scholar 

  14. Gupta PK, Stevens MN, Kashyap N et al (2018)Prevalence of meibomian gland atrophy in a pediatric population. Cornea 37:426–430

    PubMed  PubMed Central  Google Scholar 

  15. Wang X, Lu X, Yang J et al (2016) Evaluation of dry eye and meibomian gland dysfunction in teenagers with myopia through noninvasive keratograph. J Ophthalmol 2016:6761206

    PubMed  PubMed Central  Google Scholar 

  16. Mizoguchi T, Arita R, Fukuoka S et al (2017) Morphology and function of meibomian glands and other tear film parameters in junior high school students. Cornea 36:922–926

    PubMed  PubMed Central  Google Scholar 

  17. Hykin PG, Bron AJ (1992) Age-related morphological changes in lid margin and meibomian gland anatomy. Cornea 11:334–342

    CAS  PubMed  Google Scholar 

  18. He L (1982) Measurement of the thickness of the normal lid margin in Chinese. Zhonghua Yan Ke Za Zhi 18:178 (in Chinese)

    Google Scholar 

  19. Pult H, Korb DR, Murphy PJ et al (2015) A new model of central lid margin apposition and tear film mixing in spontaneous blinking. Cont Lens Anterior Eye 38:173–180

    PubMed  Google Scholar 

  20. Huang D, Swanson EA, Lin CP et al (1991) Optical coherence tomography. Science 254:1178–1181

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Ang M, Baskaran M, Werkmeister RM et al (2018) Anterior segment optical coherence tomography. Prog Retin Eye Res 66:132–156

    PubMed  Google Scholar 

  22. Park DI, Shin HM, Lee SY et al (2013) Tear production and drainage after botulinum toxin A injection in patients with essential blepharospasm. Acta Ophthalmol 91:e108–112

    PubMed  Google Scholar 

  23. Grosvenor T (1978) Etiology of astigmatism. Am J Optom Physiol Opt 55:214–218

    CAS  PubMed  Google Scholar 

  24. Anstice J (1971) Astigmatism-its components and their changes with age. Am J Optom Arch Am Acad Optom 48:1001–1006.

    Google Scholar 

  25. Baldwin WR, Mills D (1981) A longitudinal study of corneal astigmatism and total astigmatism. Am J Optom Physiol Opt 58:206–211

    CAS  PubMed  Google Scholar 

  26. Collins MJ, Buehren T, Trevor T et al (2006) Factors influencing lid pressure on the cornea. Eye Contact Lens 32:168–173

    PubMed  Google Scholar 

  27. Shaw AJ, Collins MJ, Davis BA et al (2008) Corneal refractive changes due to short-term eyelid pressure in downward gaze. J Cataract Refract Surg 34:1546–1553

    PubMed  Google Scholar 

  28. Shaw AJ, Collins MJ, Davis BA et al (2009) Eyelid pressure: inferences from corneal topographic changes. Cornea 28:181–188

    PubMed  Google Scholar 

  29. Yamaguchi M, Shiraishi A (2018) Relationship Between Eyelid Pressure and Ocular Surface Disorders in Patients With Healthy and Dry Eyes. Invest Ophthalmol Vis Sci 59:DES56-DES63.

  30. Murube J (2005) Characteristics and etiology of conjunctivochalasis: historical perspective. Ocul Surf 3:7–14

    PubMed  Google Scholar 

  31. Marmalidou A, Kheirkhah A, Dana R (2018) Conjunctivochalasis: a systematic review. Surv Ophthalmol 63:554–564

    PubMed  Google Scholar 

  32. Yamamoto Y, Shiraishi A, Sakane Y et al (2016) Involvement of eyelid pressure in lid-wiper epitheliopathy. Curr Eye Res 41:171–178

    CAS  PubMed  Google Scholar 

  33. Namiguchi K, Mizoue S, Ohta K et al (2018) Effect of botulinum toxin A treatment on eyelid pressure in eyes with blepharospasm. Curr Eye Res 43:896–901

    CAS  PubMed  Google Scholar 

  34. Young G, Hunt C, Covey M (2002) Clinical evaluation of factors influencing toric soft contact lens fit. Optom Vis Sc 79:11–19

    Google Scholar 

  35. Holden BA, Stephenson A, Stretton S et al (2001) Superior epithelial arcuate lesions with soft contact lens wear. Optom Vis Sci 78:9–12

    CAS  PubMed  Google Scholar 

  36. Cher I (2003) Blink-related microtrauma: when the ocular surface harms itself. Clin Experiment Ophthalmol 31:183–190

    PubMed  Google Scholar 

  37. Kim J, Lee SM, Choi YJ et al (2018) Estimation of eyelid pressure using a Blepharo-Tensiometer in patients with functional nasolacrimal duct obstruction. J Ophthalmol 2018:8792102

    PubMed  PubMed Central  Google Scholar 

  38. Wang DH, Liu XQ, Hao XJ et al (2018) Effect of the meibomian gland squeezer for treatment of meibomian gland dysfunction. Cornea 37:1270–1278

    PubMed  Google Scholar 

  39. Norn M (1985) Meibomian orifices and Marx’s line: studied by triple vital staining. Acta Ophthalmol 63:698–700

    CAS  Google Scholar 

  40. Donald C, Hamilton L, Doughty MJ (2003) A quantitative assessment of the location and width of Marx's line along the marginal zone of the human eyelid. Optom Vis Sci 80:564–572

    PubMed  Google Scholar 

  41. Shaw AJ, Collins MJ, Davis BA et al (2010) Eyelid pressure and contact with the ocular surface. Invest Ophthalmol Vis Sci 51:1911–1917

    PubMed  Google Scholar 

  42. Knop E, Knop N, Zhivov A et al (2011) The lid wiper and muco-cutaneous junction anatomy of the human eyelid margins: an in vivo confocal and histological study. J Anat 218:449–461

    PubMed  PubMed Central  Google Scholar 

  43. Knop N, Korb DR, Blackie CA et al (2012) The lid wiper contains goblet cells and goblet cell crypts for ocular surface lubrication during the blink. Cornea 31:668–679

    PubMed  Google Scholar 

  44. Doughty MJ (2013) Morphological features of cells along Marx's line of the marginal conjunctiva of the human eyelid. Clin Exp Optom 96:76–84

    PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (grant number: 81574028). We would like to acknowledge Xiao Wang and Cecilia Zhang for their help in language editing.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xin-Quan Liu.

Ethics declarations

Conflict of interest

Da-Hu Wang conceived and designed the study, with input from Jie Yao and Xin-Quan Liu. Da-Hu Wang and Jie Yao analyzed the data and wrote the initial manuscript draft. Xin-Quan Liu actively reviewed and revised the manuscript, and approved the final submitted manuscript. The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (MP4 41337 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, DH., Yao, J. & Liu, XQ. Comparison of two measurements for the lower lid margin thickness: vernier micrometer and anterior segment optical coherence tomography. Int Ophthalmol 40, 3223–3232 (2020). https://doi.org/10.1007/s10792-020-01505-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10792-020-01505-2

Keywords

Navigation