Skip to main content

Advertisement

Log in

The effectiveness of automatic pupillometry as a screening method to detect diabetic autonomic neuropathy

  • Original Paper
  • Published:
International Ophthalmology Aims and scope Submit manuscript

Abstract

Purpose

This study aimed to compare static and dynamic pupil responses of diabetic patients with and without nonproliferative diabetic retinopathy (DR) and normal healthy individuals under different lighting conditions via quantitative automated pupillometry.

Methods

Forty patients with DM with nonproliferative DR (group 1), 40 patients with DM without DR (group 2), and 40 healthy controls (group 3) underwent a complete ophthalmologic examination. Static pupillometry [scotopic pupil diameter (PD), mesopic PD, low photopic PD, and high photopic PD] and dynamic pupillometry (resting PD, contraction amplitude, latency, duration, velocity of contraction, dilatation latency, and duration and velocity at rest) were measured via automatic quantitative pupillometry.

Results

Analysis of variance revealed that scotopic PD [F(2, 117) = 6.42; p = 0.02], mesopic PD [F(2, 117) = 3.20; p = 0.04], and low photopic PD [F(2, 117) = 4.86; p = 0.009] were significantly different among the groups. Scotopic PD and low photopic PD were significantly lower in group 1 than in group 2 (p = 0.03 and p = 0.03, respectively). Meanwhile, the resting diameter, velocity of pupil contraction, and velocity of pupil dilatation were found to be significantly lower (p = 0.02, p = 0.01, and p = 0.008, respectively), and the duration of pupil contraction was significantly higher in group 1 than in group 3 (p = 0.03).

Conclusion

Both DM patients with and without nonproliferative DR exhibited pupillary involvement. Automated pupillometry may be an easily applicable, noninvasive screening option for reducing mortality and morbidity rates associated with diabetic autonomic neuropathy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Lee R, Wong TY, Sabanayagam C (2015) Epidemiology of diabetic retinopathy, diabetic macular edema and related vision loss. Eye Vis. https://doi.org/10.1186/s40662-015-0026-2

    Article  Google Scholar 

  2. Zhang X, Saaddine JB, Chou CF et al (2010) Prevalence of diabetic retinopathy in the United States, 2005–2008. JAMA—J Am Med Assoc 304:649–656. https://doi.org/10.1001/jama.2010.1111

    Article  CAS  Google Scholar 

  3. Heng LZ, Comyn O, Peto T et al (2013) Diabetic retinopathy: pathogenesis, clinical grading, management and future developments. Diabet Med 30:640–650. https://doi.org/10.1111/dme.12089

    Article  CAS  PubMed  Google Scholar 

  4. Vinik AI, Erbas T (2001) Recognizing and treating diabetic autonomic neuropathy. Clevel Clin J Med 68:928–944

    Article  CAS  Google Scholar 

  5. Tesfaye S, Boulton AJM, Dyck PJ et al (2010) Diabetic neuropathies: update on definitions, diagnostic criteria, estimation of severity, and treatments. Diabetes Care 33:2285–2293. https://doi.org/10.2337/dc10-1303

    Article  PubMed  PubMed Central  Google Scholar 

  6. Vinik AI, Erbas T (2006) Cardiovascular autonomic neuropathy: diagnosis and management. Curr Diabetes Rep 6:424–430. https://doi.org/10.1007/s11892-006-0074-z

    Article  CAS  Google Scholar 

  7. Stein PK, Kleiger RE, Rottman JN (1997) Differing effects of age on heart rate variability in men and women. Am J Cardiol 80:302–305. https://doi.org/10.1016/S0002-9149(97)00350-0

    Article  CAS  PubMed  Google Scholar 

  8. Cahill M, Eustace P, De Jesus V (2001) Pupillary autonomic denervation with increasing duration of diabetes mellitus. Br J Ophthalmol 85:1225–1230. https://doi.org/10.1136/bjo.85.10.1225

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Clarke CF, Piesowicz AT, Spathis GS (1989) Pupillary size in children and adolescents with type 1 diabetes. Diabet Med 6:780–783. https://doi.org/10.1111/j.1464-5491.1989.tb01278.x

    Article  CAS  PubMed  Google Scholar 

  10. Fotiou F, Fountoulakis KN, Goulas A et al (2000) Automated standardized pupillometry with optical method for purposes of clinical practice and research. Clin Physiol 20:336–347. https://doi.org/10.1046/j.1365-2281.2000.00259.x

    Article  CAS  PubMed  Google Scholar 

  11. Meeker M, Du R, Bacchetti P et al (2005) Pupil examination: validity and clinical utility of an automated pupillometer. J Neurosci Nurs 37:34–40. https://doi.org/10.1097/01376517-200502000-00006

    Article  PubMed  Google Scholar 

  12. Truong JQ, Ciuffreda KJ (2016) Quantifying pupillary asymmetry through objective binocular pupillometry in the normal and mild traumatic brain injury (mTBI) populations. Brain Inj 30:1372–1377. https://doi.org/10.1080/02699052.2016.1192220

    Article  PubMed  Google Scholar 

  13. Adhikari P, Zele AJ, Thomas R, Feigl B (2016) Quadrant field pupillometry detects melanopsin dysfunction in glaucoma suspects and early glaucoma. Sci Rep 6:33373. https://doi.org/10.1038/srep33373

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Kardon R, Anderson SC, Damarjian TG et al (2011) Chromatic pupillometry in patients with retinitis pigmentosa. Ophthalmology 118:376–381. https://doi.org/10.1016/j.ophtha.2010.06.033

    Article  PubMed  Google Scholar 

  15. Zafar SF, Suarez JI (2014) Automated pupillometer for monitoring the critically ill patient: a critical appraisal. J Crit Care 29:599–603. https://doi.org/10.1016/j.jcrc.2014.01.012

    Article  PubMed  Google Scholar 

  16. Hsieh YT, Hu FR (2007) The correlation of pupil size measured by colvard pupillometer and orbscan II. J Refract Surg 23:789–795. https://doi.org/10.3928/1081-597x-20071001-08

    Article  PubMed  Google Scholar 

  17. Nakayama M, Nakamura J, Hamada Y et al (2001) Aldose reductase inhibition ameliorates pupillary light reflex and F-wave latency in patients with mild diabetic neuropathy. Diabetes Care 24:1093–1098. https://doi.org/10.2337/diacare.24.6.1093

    Article  CAS  PubMed  Google Scholar 

  18. McNally PG, Lawrence IG, Panerai RB et al (1999) Sudden death in type 1 diabetes. Diabetes Obes Metab 1:151–158. https://doi.org/10.1046/j.1463-1326.1999.00025.x

    Article  CAS  PubMed  Google Scholar 

  19. Reichard P, Pihl M (1994) Mortality and treatment side-effects during long-term intensified conventional insulin treatment in the Stockholm Diabetes Intervention Study. Diabetes 43:313–317. https://doi.org/10.2337/diab.43.2.313

    Article  CAS  PubMed  Google Scholar 

  20. Donaghue KC, Pena MM, Fung ATW et al (1995) The prospective assessment of autonomic nerve function by pupillometry in adolescents with type 1 diabetes mellitus. Diabet Med 12:868–873. https://doi.org/10.1111/j.1464-5491.1995.tb00388.x

    Article  PubMed  Google Scholar 

  21. Pittasch D, Lobmann R, Behrens-Baumann W, Lehnert H (2002) Pupil signs of sympathetic autonomic neuropathy in patients with type 1 diabetes. Diabetes Care 25:1545–1550. https://doi.org/10.2337/diacare.25.9.1545

    Article  PubMed  Google Scholar 

  22. Katz BSI (1992) Pupillary changes of diabetic eye. Ophthalmol Clin North Am 5:379–388

    Google Scholar 

  23. Smith SA, Smith SE (1983) Evidence for a neuropathic aetiology in the small pupil of diabetes mellitus. Br J Ophthalmol 67:89–93. https://doi.org/10.1136/bjo.67.2.89

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Feigl B, Zele AJ, Fader SM et al (2012) The post-illumination pupil response of melanopsin-expressing intrinsically photosensitive retinal ganglion cells in diabetes. Acta Ophthalmol 90:e230–e234. https://doi.org/10.1111/j.1755-3768.2011.02226.x

    Article  PubMed  Google Scholar 

  25. Lerner AG, Bernabé-Ortiz A, Ticse R et al (2015) Type 2 diabetes and cardiac autonomic neuropathy screening using dynamic pupillometry. Diabet Med 32:1470–1478. https://doi.org/10.1111/dme.12752

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Ferrari GL, Marques JLB, Gandhi RA et al (2010) Using dynamic pupillometry as a simple screening tool to detect autonomic neuropathy in patients with diabetes: a pilot study. Biomed Eng Online 9:26. https://doi.org/10.1186/1475-925X-9-26

    Article  PubMed  PubMed Central  Google Scholar 

  27. Yuan D, Spaeth EB, Vernino S, Muppidi S (2014) Disproportionate pupillary involvement in diabetic autonomic neuropathy. Clin Auton Res 24:305–309. https://doi.org/10.1007/s10286-014-0258-6

    Article  PubMed  Google Scholar 

  28. Maguire AM, Craig ME, Craighead A et al (2007) Autonomic nerve testing predicts the development of complications: a 12-year follow-up study. Diabetes Care 30:77–82. https://doi.org/10.2337/dc06-0793

    Article  PubMed  Google Scholar 

  29. Clark CV (1988) Ocular autonomic nerve function in proliferative diabetic retinopathy. Eye 2:96–101. https://doi.org/10.1038/eye.1988.20

    Article  PubMed  Google Scholar 

  30. Wang Y, Zekveld AA, Naylor G et al (2016) Parasympathetic nervous system dysfunction, as identified by pupil light reflex, and its possible connection to hearing impairment. PLoS ONE. https://doi.org/10.1371/journal.pone.0153566

    Article  PubMed  PubMed Central  Google Scholar 

  31. Fujii T, Ishikawa S, Uga S (1977) Ultrastructure of iris muscles in diabetes mellitus. Ophthalmologica 174:228–239. https://doi.org/10.1159/000308607

    Article  CAS  PubMed  Google Scholar 

  32. Nitoda E, Kallinikos P, Pallikaris A et al (2012) Correlation of diabetic retinopathy and corneal neuropathy using confocal microscopy. Curr Eye Res 37:898–906. https://doi.org/10.3109/02713683.2012.683507

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seyfettin Erdem.

Ethics declarations

Conflict of interest

All authors certify that they have no affiliations with or involvement in any organization or entity with any financial interest (such as honoraria; educational grants; participation in speakers’ bureaus; membership, employment, consultancies, stock ownership, or other equity interest; and expert testimony or patent-licensing arrangements) or nonfinancial interest (such as personal or professional relationships, affiliations, knowledge, or beliefs) in the subject matter or materials discussed in this manuscript.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki Declaration and its later amendments or comparable ethical standards.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Erdem, S., Karahan, M., Ava, S. et al. The effectiveness of automatic pupillometry as a screening method to detect diabetic autonomic neuropathy. Int Ophthalmol 40, 3127–3134 (2020). https://doi.org/10.1007/s10792-020-01499-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10792-020-01499-x

Keywords

Navigation