Skip to main content

Advertisement

Log in

Posterior pole retinal thickness distribution pattern in keratoconus

  • Original Paper
  • Published:
International Ophthalmology Aims and scope Submit manuscript

Abstract

Purpose

To evaluate the pattern of retinal thickness distribution in patients with keratoconus (KCN) and its correlation with disease severity.

Methods

For this cross-sectional cohort study, the study subjects with documented keratoconus and normal eyes were prospectively enrolled. All subjects had anterior segment (Pentacam HR) and posterior segment (Spectralis) imaging. Posterior segment imaging by optical coherence tomography included the posterior pole asymmetry analysis map. Data were analyzed with multiple linear regression models and correlation tests to examine the mean and variance of the measured thickness of the retina and its distribution relative to the presence and severity of KCN.

Results

A total of 24 subjects with keratoconus (48 eyes) and 14 normal subjects (28 eyes) enrolled in this study. The posterior pole retinal thickness, both superior and inferior hemifields, as well as the overall retinal thickness in KCN patients was greater than the control group. There was a direct correlation between the overall retinal thickness of the posterior pole and the severity of KCN (R2 = 0.422, P < 0.001). However, the variability of the retinal thickness showed no difference between KCN-afflicted and healthy eyes.

Conclusion

Although KCN is a disease of the anterior segment of the eye, we found an orderly increase in posterior pole retinal thickness that is correlated with the severity of disease in KCN eyes compared to control. These findings suggest that the retina may maintain some degree of plasticity to respond to the degraded optical system of the eye.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Brautaset RL, Rosen R, Cervino A, Miller WL, Bergmanson J, Nilsson M (2015) Comparison of macular thickness in patients with keratoconus and control subjects using the cirrus HD-OCT. Biomed Res Int 2015:832863. https://doi.org/10.1155/2015/832863

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Gutierrez-Bonet R, Ruiz-Medrano J, Pena-Garcia P, Catanese M, Sadeghi Y, Hashemi K, Gabison E, Ruiz-Moreno JM (2018) Macular choroidal thickening in keratoconus patients: swept-source optical coherence tomography study. Transl Vis Sci Technol 7(3):15. https://doi.org/10.1167/tvst.7.3.15

    Article  PubMed  PubMed Central  Google Scholar 

  3. Sahebjada S, Amirul Islam FM, Wickremasinghe S, Daniell M, Baird PN (2015) Assessment of macular parameter changes in patients with keratoconus using optical coherence tomography. J Ophthalmol 2015:245953. https://doi.org/10.1155/2015/245953

    Article  PubMed  PubMed Central  Google Scholar 

  4. Bak-Nielsen S, Ramlau-Hansen CH, Ivarsen A, Plana-Ripoll O, Hjortdal J (2018) A nationwide population-based study of social demographic factors, associated diseases and mortality of keratoconus patients in Denmark from 1977 to 2015. Acta Ophthalmol. https://doi.org/10.1111/aos.13961

    Article  PubMed  Google Scholar 

  5. Kelly TL, Williams KA, Coster DJ, Australian Corneal Graft R (2011) Corneal transplantation for keratoconus: a registry study. Arch Ophthalmol 129(6):691–697. https://doi.org/10.1001/archophthalmol.2011.7

    Article  PubMed  Google Scholar 

  6. Gomes JA, Rapuano CJ, Belin MW, Ambrosio R Jr, Group of Panelists for the Global Delphi Panel of K, Ectatic D (2015) Global consensus on keratoconus diagnosis. Cornea 34(12):e38–39. https://doi.org/10.1097/ICO.0000000000000623

    Article  PubMed  Google Scholar 

  7. Kalkan Akcay E, Akcay M, Uysal BS, Kosekahya P, Aslan AN, Caglayan M, Koseoglu C, Yulek F, Cagil N (2014) Impaired corneal biomechanical properties and the prevalence of keratoconus in mitral valve prolapse. J Ophthalmol 2014:402193. https://doi.org/10.1155/2014/402193

    Article  PubMed  PubMed Central  Google Scholar 

  8. Woodward MA, Blachley TS, Stein JD (2016) The association between sociodemographic factors, common systemic diseases, and keratoconus: an analysis of a nationwide heath care claims database. Ophthalmology 123(3):457–465. https://doi.org/10.1016/j.ophtha.2015.10.035

    Article  PubMed  Google Scholar 

  9. Robertson I (1975) Keratoconus and the ehlers-danlos syndrome: a new aspect of keratoconus. Med J Aust 1(18):571–573

    Article  CAS  Google Scholar 

  10. Oh JY, Yu HG (2010) Keratoconus associated with choroidal neovascularization: a case report. J Med Case Rep 4:58. https://doi.org/10.1186/1752-1947-4-58

    Article  PubMed  PubMed Central  Google Scholar 

  11. Eandi CM, Del Priore LV, Bertelli E, Ober MD, Yannuzzi LA (2008) Central serous chorioretinopathy in patients with keratoconus. Retina 28(1):94–96. https://doi.org/10.1097/IAE.0b013e3180986299

    Article  PubMed  Google Scholar 

  12. Akkaya S (2018) Macular and peripapillary choroidal thickness in patients with keratoconus. Ophthalmic Surg Lasers Imaging Retina 49(9):664–673. https://doi.org/10.3928/23258160-20180831-03

    Article  PubMed  Google Scholar 

  13. Akkaya S, Kucuk B (2017) Lamina cribrosa thickness in patients with keratoconus. Cornea 36(12):1509–1513. https://doi.org/10.1097/ICO.0000000000001379

    Article  PubMed  Google Scholar 

  14. Moschos MM, Chatziralli IP, Koutsandrea C, Siasou G, Droutsas D (2013) Assessment of the macula in keratoconus: an optical coherence tomography and multifocal electroretinography study. Ophthalmologica 229(4):203–207. https://doi.org/10.1159/000350801

    Article  PubMed  Google Scholar 

  15. Geitzenauer W, Hitzenberger CK, Schmidt-Erfurth UM (2011) Retinal optical coherence tomography: past, present and future perspectives. Br J Ophthalmol 95(2):171–177. https://doi.org/10.1136/bjo.2010.182170

    Article  PubMed  Google Scholar 

  16. Virgili G, Menchini F, Dimastrogiovanni AF, Rapizzi E, Menchini U, Bandello F, Chiodini RG (2007) Optical coherence tomography versus stereoscopic fundus photography or biomicroscopy for diagnosing diabetic macular edema: a systematic review. Invest Ophthalmol Vis Sci 48(11):4963–4973. https://doi.org/10.1167/iovs.06-1472

    Article  PubMed  Google Scholar 

  17. Neubauer AS, Priglinger S, Ullrich S, Bechmann M, Thiel MJ, Ulbig MW, Kampik A (2001) Comparison of foveal thickness measured with the retinal thickness analyzer and optical coherence tomography. Retina 21(6):596–601

    Article  CAS  Google Scholar 

  18. Baumann M, Gentile RC, Liebmann JM, Ritch R (1998) Reproducibility of retinal thickness measurements in normal eyes using optical coherence tomography. Ophthalmic Surg Lasers 29(4):280–285

    CAS  PubMed  Google Scholar 

  19. Hee MR, Puliafito CA, Wong C, Duker JS, Reichel E, Rutledge B, Schuman JS, Swanson EA, Fujimoto JG (1995) Quantitative assessment of macular edema with optical coherence tomography. Arch Ophthalmol 113(8):1019–1029

    Article  CAS  Google Scholar 

  20. Cankaya AB, Beyazyildiz E, Ileri D, Yilmazbas P (2012) Optic disc and retinal nerve fiber layer parameters of eyes with keratoconus. Ophthalmic Surg Lasers Imaging 43(5):401–407. https://doi.org/10.3928/15428877-20120531-01

    Article  PubMed  Google Scholar 

  21. Koytak A, Kubaloglu A, Sari ES, Atakan M, Culfa S, Ozerturk Y (2011) Changes in central macular thickness after uncomplicated corneal transplantation for keratoconus: penetrating keratoplasty versus deep anterior lamellar keratoplasty. Cornea 30(12):1318–1321. https://doi.org/10.1097/ICO.0b013e31821eeaad

    Article  PubMed  Google Scholar 

  22. Acar BT, Muftuoglu O, Acar S (2011) Comparison of macular thickness measured by optical coherence tomography after deep anterior lamellar keratoplasty and penetrating keratoplasty. Am J Ophthalmol 152(5):756–761. https://doi.org/10.1016/j.ajo.2011.05.001

    Article  PubMed  Google Scholar 

  23. Hua R, Gangwani R, Guo L, McGhee S, Ma X, Li J, Yao K (2016) Detection of preperimetric glaucoma using Bruch membrane opening, neural canal and posterior pole asymmetry analysis of optical coherence tomography. Sci Rep 6:21743. https://doi.org/10.1038/srep21743

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Dave P, Shah J (2015) Diagnostic accuracy of posterior pole asymmetry analysis parameters of spectralis optical coherence tomography in detecting early unilateral glaucoma. Indian J Ophthalmol 63(11):837–842. https://doi.org/10.4103/0301-4738.171965

    Article  PubMed  PubMed Central  Google Scholar 

  25. Khanal S, Davey PG, Racette L, Thapa M (2016) Intraeye retinal nerve fiber layer and macular thickness asymmetry measurements for the discrimination of primary open-angle glaucoma and normal tension glaucoma. J Optom 9(2):118–125. https://doi.org/10.1016/j.optom.2015.10.002

    Article  PubMed  Google Scholar 

  26. Kim JM, Sung KR, Yoo YC, Kim CY (2013) Point-wise relationships between visual field sensitivity and macular thickness determined by spectral-domain optical coherence tomography. Curr Eye Res 38(8):894–901. https://doi.org/10.3109/02713683.2013.787433

    Article  PubMed  Google Scholar 

  27. Alluwimi MS, Swanson WH, Malinovsky VE (2014) Between-subject variability in asymmetry analysis of macular thickness. Optom Vis Sci 91(5):484–490. https://doi.org/10.1097/OPX.0000000000000249

    Article  PubMed  PubMed Central  Google Scholar 

  28. Belin MW, Duncan JK (2016) Keratoconus: the ABCD grading system. Klin Monbl Augenheilkd 233(6):701–707. https://doi.org/10.1055/s-0042-100626

    Article  CAS  PubMed  Google Scholar 

  29. Zhang Y, Li N, Chen J, Wei H, Jiang SM, Chen XM (2017) A new strategy to interpret OCT posterior pole asymmetry analysis for glaucoma diagnosis. Int J Ophthalmol 10(12):1857–1863. https://doi.org/10.18240/ijo.2017.12.11

    Article  PubMed  PubMed Central  Google Scholar 

  30. Nishi T, Ueda T, Mizusawa Y, Semba K, Shinomiya K, Mitamura Y, Sakamoto T, Ogata N (2017) Effect of optical correction on subfoveal choroidal thickness in children with anisohypermetropic amblyopia. PLoS ONE 12(12):e0189735. https://doi.org/10.1371/journal.pone.0189735

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Carmichael Martins A, Vohnsen B (2018) Analysing the impact of myopia on the Stiles-Crawford effect of the first kind using a digital micromirror device. Ophthalmic Physiol Opt 38(3):273–280. https://doi.org/10.1111/opo.12441

    Article  PubMed  Google Scholar 

  32. Pinero DP, Nieto JC, Lopez-Miguel A (2012) Characterization of corneal structure in keratoconus. J Cataract Refract Surg 38(12):2167–2183. https://doi.org/10.1016/j.jcrs.2012.10.022

    Article  PubMed  Google Scholar 

  33. Bai HX, Mao Y, Shen L, Xu XL, Gao F, Zhang ZB, Li B, Jonas JB (2017) Bruch s membrane thickness in relationship to axial length. PLoS ONE 12(8):e0182080. https://doi.org/10.1371/journal.pone.0182080

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Jonas JB, Ohno-Matsui K, Jiang WJ, Panda-Jonas S (2017) Bruch membrane and the mechanism of myopization: a new theory. Retina 37(8):1428–1440. https://doi.org/10.1097/IAE.0000000000001464

    Article  PubMed  Google Scholar 

  35. Rakshit T, Senapati S, Parmar VM, Sahu B, Maeda A (1864) Park PS (2017) Adaptations in rod outer segment disc membranes in response to environmental lighting conditions. Biochim Biophys Acta Mol Cell Res 10:1691–1702. https://doi.org/10.1016/j.bbamcr.2017.06.013

    Article  CAS  Google Scholar 

  36. Schremser JL, Williams TP (1995) Rod outer segment (ROS) renewal as a mechanism for adaptation to a new intensity environment I Rhodopsin levels and ROS length. Exp Eye Res 61(1):17–23. https://doi.org/10.1016/s0014-4835(95)80054-9

    Article  CAS  PubMed  Google Scholar 

  37. Penn JS, Williams TP (1986) Photostasis: regulation of daily photon-catch by rat retinas in response to various cyclic illuminances. Exp Eye Res 43(6):915–928. https://doi.org/10.1016/0014-4835(86)90070-9

    Article  CAS  PubMed  Google Scholar 

  38. Bayraktar Bilen N, Hepsen IF, Arce CG (2016) Correlation between visual function and refractive, topographic, pachymetric and aberrometric data in eyes with keratoconus. Int J Ophthalmol 9(8):1127–1133. https://doi.org/10.18240/ijo.2016.08.07

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Funding

No funding was received for this work. The contents of this work do not represent the views of the Department of Veterans Affairs or the United States government.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nader D. Nader.

Ethics declarations

Conflict of interest

None was declared by the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fard, A.M., Patel, S.P., Sorkhabi, R.D. et al. Posterior pole retinal thickness distribution pattern in keratoconus. Int Ophthalmol 40, 2807–2816 (2020). https://doi.org/10.1007/s10792-020-01464-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10792-020-01464-8

Keywords

Navigation