Skip to main content

Advertisement

Log in

Ocular abnormalities in beta thalassemia patients: prevalence, impact, and management strategies

  • Review
  • Published:
International Ophthalmology Aims and scope Submit manuscript

Abstract

Background

Beta thalassemia (β-thalassemia) is a hereditary disease caused by defective globin synthesis and can be classified into three categories of minor (β-TMi), intermedia (β-TI), and major (β-TM) thalassemia. The aim of our study is to investigate the effects of β-thalassemia and its treatment methods on different parts of the eye and how early-diagnostic methods of ocular complications in this disorder would prevent further ocular complications in these patients by immediate treatment and diet change.

Methods

We developed a search strategy using a combination of the words Beta thalassemia, Ocular abnormalities, Iron overload, chelation therapy to identify all articles from PubMed, Web of Science, Scopus, and Google Scholar up to December 2018. To find more articles and to ensure that databases were thoroughly searched, the reference lists of selected articles were also reviewed.

Results

Complications such as retinopathy, crystalline lens opacification, color vision deficiency, nyctalopia, depressed visual field, reduced visual acuity, reduced contrast sensitivity, amplitude reduction in a-wave and b-wave in Electroretinography (ERG), and decrease in the Arden ratio in Electrooculography (EOG) have all been reported in β-thalassemia patients undergoing chelation therapy.

Conclusion

Ocular problems due to β-thalassemia may be a result of anemia, iron overload in the body tissue, side effects of iron chelators, and the complications of orbital bone marrow expansion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Provan D, Singer CR, Baglin T, Dokal I (2009) Oxford handbook of clinical haematology. Oxford University Press, Oxford

    Google Scholar 

  2. Cao A, Galanello R (2010) Beta-thalassemia. Genet Med 12(2):61

    CAS  PubMed  Google Scholar 

  3. Olivieri NF, Nathan DG, MacMillan JH et al (1994) Survival in medically treated patients with homozygous β-thalassemia. N Engl J Med 331(9):574–578

    CAS  PubMed  Google Scholar 

  4. He X, Hahn P, Iacovelli J et al (2007) Iron homeostasis and toxicity in retinal degeneration. Prog Retin Eye Res 26(6):649–673

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Brittenham GM, Griffith PM, Nienhuis AW et al (1994) Efficacy of deferoxamine in preventing complications of iron overload in patients with thalassemia major. N Engl J Med 331(9):567–573

    CAS  PubMed  Google Scholar 

  6. Bollig C, Schell LK, Rücker G et al (2017) Deferasirox for managing iron overload in people with thalassaemia. Cochrane Database Syst Rev 8:CD007476

  7. Olivieri NF, Brittenham GM, Matsui D et al (1995) Iron-chelation therapy with oral deferiprone in patients with thalassemia major. N Engl J Med 332(14):918–922

    CAS  PubMed  Google Scholar 

  8. Liaska A, Petrou P, Georgakopoulos CD et al (2016) β-Thalassemia and ocular implications: a systematic review. BMC Ophthalmol 16(1):102

    PubMed  PubMed Central  Google Scholar 

  9. Gartaganis S, Ismiridis K, Papageorgiou O, Beratis NG, Papanastasiou D (1989) Ocular abnormalities in patients with β-thalassemia. Am J Ophthalmol 108(6):699–703

    CAS  PubMed  Google Scholar 

  10. Gaba A, D’Souza P, Chandra J, Narayan S, Sen S (1998) Ocular changes in β-thalassemia. Ann Ophthalmol Glaucoma 30(6):357–360

    Google Scholar 

  11. Shahriari H, Ghasemzadeh F, Eshghi P, Masoomian B (2006) Ocular side effects of desferal in patients with β-thalassemia. Bina J Ophthalmol 11:519–523

    Google Scholar 

  12. Taher A, Bashshur Z, Shamseddeen WA et al (2006) Ocular findings among thalassemia patients. Am J Ophthalmol 142(4):704–705

    PubMed  Google Scholar 

  13. Rahiminejad M, Rahiminejad S, Rahimi M et al (2009) Ocular complication and visual evoked potential in β-thalassemia patients on desferal therapy. Res J Biol Sci 4(8):928–932

    Google Scholar 

  14. Taneja R, Malik P, Sharma M, Agarwal MC (2010) Multiple transfused thalassemia major: ocular manifestations in a hospital-based population. Indian J Ophthalmol 58(2):125

    PubMed  PubMed Central  Google Scholar 

  15. Dewan P, Gomber S, Chawla H, Rohatgi J (2011) Ocular changes in multi-transfused children with β-thalassaemia receiving desferrioxamine: a case-control study. S Afr J Child Health 5(1):11–14

    Google Scholar 

  16. Nowroozzadeh MH, Kalantari Z, Namvar K, Meshkibaf MH (2011) Ocular refractive and biometric characteristics in patients with thalassaemia major. Clin Exp Optom 94(4):361–366

    PubMed  Google Scholar 

  17. Jafari R, Heydarian S, Karami H et al (2015) Ocular abnormalities in multi-transfused beta-thalassemia patients. Indian J Ophthalmol 63(9):710

    PubMed  PubMed Central  Google Scholar 

  18. Kumble D, Sekhon PK (2017) Ocular involvement in beta thalassemia major: a prospective study in an Indian cohort. Int J Contemp Pediatr 4(3):780–782

    Google Scholar 

  19. Merchant RH, Punde H, Thacker N, Bhatt D (2017) Ophthalmic evaluation in beta-thalassemia. Indian J Pediatr 84(7):509–514

    PubMed  Google Scholar 

  20. Barteselli G, Dell’arti L, Finger RP et al (2014) The spectrum of ocular alterations in patients with beta-thalassemia syndromes suggests a pathology similar to pseudoxanthoma elasticum. Ophthalmology 121:709–718

    PubMed  Google Scholar 

  21. Saif AT, Saif PS, Dabous O (2017) Fundus changes in thalassemia in Egyptian patients. Delta J Ophthalmol 18(1):20

    Google Scholar 

  22. Voskaridou E, Terpos E (2004) New insights into the pathophysiology and management of osteoporosis in patients with beta thalassaemia. Br J Haematol 127(2):127–139

    CAS  PubMed  Google Scholar 

  23. Jensen C, Tuck S, Agnew J et al (1998) High prevalence of low bone mass in thalassaemia major. Br J Haematol 103(4):911–915

    CAS  PubMed  Google Scholar 

  24. Weatherall DJ, Clegg JB (2008) The thalassaemia syndromes. Wiley, Hoboken

    Google Scholar 

  25. Heydarian S, Jafari R, Karami H (2016) Refractive errors and ocular biometry components in thalassemia major patients. Int Ophthalmol 36(2):267–271

    PubMed  Google Scholar 

  26. Parentin F, Tonini G, Perissutti P (2004) Refractive evaluation in children with growth defect. Curr Eye Res 28(1):11–15

    PubMed  Google Scholar 

  27. Parentin F, Perissutti P (2005) Congenital growth hormone deficiency and eye refraction: a longitudinal study. Ophthalmologica 219(4):226–231

    CAS  PubMed  Google Scholar 

  28. Bourla DH, Laron Z, Snir M, Lilos P, Weinberger D, Axer-Siegel R (1197) Insulinlike growth factor I affects ocular development: a study of untreated and treated patients with Laron syndrome. Ophthalmology 113(7):e1–e5

    Google Scholar 

  29. Khalaj M, Mahyar A, Jahan Hashemi H, Godsi F (2009) Assessing the refractive errors in beta-thalassemia major patients. J Guilan Univ Med Sci 17(68):42–49

    Google Scholar 

  30. Elkitkat RS, El-Shazly AA, Ebeid WM, Deghedy MR (2018) Relation of anthropometric measurements to ocular biometric changes and refractive error in children with thalassemia. Eur J Ophthalmol 28(2):139–143

    PubMed  Google Scholar 

  31. Gartaganis S, Georgakopoulos C, Exarchou A et al (2003) Alterations in conjunctival cytology and tear film dysfunction in patients with β-thalassemia. Cornea 22(7):591–597

    CAS  PubMed  Google Scholar 

  32. Arcasoy A, Cavdar AO (1975) Changes of trace minerals (serum iron, zinc, copper and magnesium) in thalassemia. Acta Haematol 53(6):341–346

    CAS  PubMed  Google Scholar 

  33. De Luca C, Filosa A, Grandinetti M, Maggio F, Lamba M, Passi S (1999) Blood antioxidant status and urinary levels of catecholamine metabolites in β-thalassemia. Free Radic Res 30(6):453–462

    PubMed  Google Scholar 

  34. Borgna-Pignatti C, Cammareri V, De Stefano P, Magrini U (1984) The sicca syndrome in thalassaemia major. Br Med J (Clin Res Ed) 288(6418):668–669

    CAS  Google Scholar 

  35. Popescu C, Siganos D, Zanakis E, Padakis A (1998) The mechanism of cataract formation in persons with beta-thalassemia. Oftalmologia (Bucharest, Romania: 1990) 45(4):10–13

    CAS  Google Scholar 

  36. Athanasiadis I, Konstantinidis A, Kyprianou I, Robinson R, Moschou V, Kouzi-Koliakos K (2007) Rapidly progressing bilateral cataracts in a patient with beta thalassemia and pellagra. J Cataract Refract Surg 33(9):1659–1661

    PubMed  Google Scholar 

  37. Dhawan V, KhR K, Marwaha R, Ganguly NK (2005) Antioxidant status in children with homozygous thalassemia. Indian Pediatr 42(11):1141–1145

    PubMed  Google Scholar 

  38. Marsili S, Salganik RI, Albright CD et al (2004) Cataract formation in a strain of rats selected for high oxidative stress. Exp Eye Res 79(5):595–612

    CAS  PubMed  Google Scholar 

  39. Mehdizadeh M, Nowroozzadeh MH (2009) Posterior subcapsular opacity in two patients with thalassaemia major following deferiprone consumption. Clin Exp Optom 92(4):392–394

    PubMed  Google Scholar 

  40. Aksoy A, Aslan L, Aslankurt M et al (2014) Retinal fiber layer thickness in children with thalassemia major and iron deficiency anemia. Semin ophthalmol 29(1):22–26

    PubMed  Google Scholar 

  41. Bhoiwala DL, Dunaief JL (2016) Retinal abnormalities in β-thalassemia major. Surv Ophthalmol 61(1):33–50

    PubMed  Google Scholar 

  42. Genead MA, Fishman GA, Anastasakis A, Lindeman M (2010) Macular vitelliform lesion in desferrioxamine-related retinopathy. Doc Ophthalmol 121:161–166

    PubMed  PubMed Central  Google Scholar 

  43. Georgakopoulos CD, Tsapardoni F, Kostopoulou EV, Makri OE (2018) Pattern dystrophies in patients treated with deferoxamine: report of two cases and review of the literature. BMC Ophthalmol 18(1):246

    PubMed  PubMed Central  Google Scholar 

  44. Gonzales CR, Lin AP, Engstrom RE, Kreiger AE (2004) Bilateral vitelliform maculopathy and deferoxamine toxicity. Retina (Philadelphia, Pa) 24(3):464–467

    Google Scholar 

  45. Viola F, Barteselli G, Dell’Arti L et al (2014) Multimodal imaging in deferoxamine retinopathy. Retina (Philadelphia, Pa) 34(7):1428–1438

    Google Scholar 

  46. Finger RP, Issa PC, Ladewig MS et al (2009) Pseudoxanthoma elasticum: genetics, clinical manifestations and therapeutic approaches. Surv Ophthalmol 54(2):272–285

    PubMed  Google Scholar 

  47. Goodman G, von Sallmann L, Holland MG (1957) Ocular manifestations of sickle-cell disease. AMA Arch Ophthalmol 58(5):655–682

    CAS  PubMed  Google Scholar 

  48. Aessopos A, Farmakis D, Loukopoulos D (2002) Elastic tissue abnormalities resembling pseudoxanthoma elasticum in β-thalassemia and the sickling syndromes. Blood 99(1):30–35

    CAS  PubMed  Google Scholar 

  49. Hamlin N, Beck K, Bacchelli B, Cianciulli P, Pasquali-Ronchetti I, Le Saux O (2003) Acquired Pseudoxanthoma elasticum-like syndrome in β-thalassaemia patients. Br J Haematol 122(5):852–854

    CAS  PubMed  Google Scholar 

  50. Bunda S, Kaviani N, Hinek A (2005) Fluctuations of intracellular iron modulate elastin production. J Biol Chem 280(3):2341–2351

    CAS  PubMed  Google Scholar 

  51. Martin L, Douet V, VanWart CM, Heller MB, Le Saux O (2011) A mouse model of β-thalassemia shows a liver-specific down-regulation of ABCC6 expression. Am J Pathol 178(2):774–783

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Jiang Q, Matsuzaki Y, Li K, Uitto J (2006) Transcriptional regulation and characterization of the promoter region of the human ABCC6 gene. J Investig Dermatol 126(2):325–335

    CAS  PubMed  Google Scholar 

  53. Georgalas I, Papaconstantinou D, Koutsandrea C et al (2009) Angioid streaks, clinical course, complications, and current therapeutic management. Ther Clin Risk Manag 5:81

    PubMed  PubMed Central  Google Scholar 

  54. Aessopos A, Stamatelos G, Savvides P et al (1989) Angioid streaks in homozygous β-thalassemia. Am J Ophthalmol 108(4):356–359

    CAS  PubMed  Google Scholar 

  55. Gibson J, Chaudhuri P, Rosenthal A (1983) Angioid streaks in a case of beta thalassaemia major. Br J Ophthalmol 67(1):29

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Kinsella FP, Mooney DJ (1988) Angioid streaks in beta thalassaemia minor. Br J Ophthalmol 72(4):303–304

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Aessopos A, Floudas CS, Kati M et al (2008) Loss of vision associated with angioid streaks in β-thalassemia intermedia. Int J Hematol 87(1):35–38

    PubMed  Google Scholar 

  58. Issa PC, Finger RP, Götting C, Hendig D, Holz FG, Scholl HP (2010) Centrifugal fundus abnormalities in pseudoxanthoma elasticum. Ophthalmology 117(7):1406–1414

    Google Scholar 

  59. Incorvaia C, Parmeggiani F, Costagliola C, Perri P, D’Angelo S, Sebastiani A (2003) Quantitative evaluation of the retinal venous tortuosity in chronic anaemic patients affected by β-thalassaemia major. Eye 17(3):324

    CAS  PubMed  Google Scholar 

  60. Sorcinelli R, Sitzia A, Figus A, Lai M (1990) Ocular findings in beta-thalassemia. Metab Pediatr Syst Ophthalmol (New York, NY: 1985) 13(1):23–25

    CAS  Google Scholar 

  61. Moiseyev G, Chen Y, Takahashi Y, Wu BX, Ma J-X (2005) RPE65 is the isomerohydrolase in the retinoid visual cycle. Proc Natl Acad Sci 102(35):12413–12418

    CAS  PubMed  Google Scholar 

  62. Błasiak J, Skłodowska A, Ulińska M, Szaflik J (2009) Iron and age-related macular degeneration. Klin Oczna 111(4–6):174–177

    PubMed  Google Scholar 

  63. Mehta S, Dunaief JL (2012) The role of iron in retinal diseases. In: Studies on retinal and choroidal disorders. Humana Press, pp 259–275

  64. Davies S, Hungerford J, Arden G, Marcus R, Miller M, Huehns E (1983) Ocular toxicity of high-dose intravenous desferrioxamine. Lancet 322(8343):181–184

    Google Scholar 

  65. Olivieri NF, Buncic JR, Chew E et al (1986) Visual and auditory neurotoxicity in patients receiving subcutaneous deferoxamine infusions. N Engl J Med 314(14):869–873

    CAS  PubMed  Google Scholar 

  66. Baath JS, Lam WC, Kirby M, Chun A (2008) Deferoxamine-related ocular toxicity: incidence and outcome in a pediatric population. Retina (Philadelphia, Pa) 28:894–899

    Google Scholar 

  67. Haimovici R, D’Amico DJ, Gragoudas ES, Sokol S (2002) The expanded clinical spectrum of deferoxamine retinopathy. Ophthalmology 109:164–171

    PubMed  Google Scholar 

  68. Wu C-H, Yang C-P, Lai C-C, Wu W-C, Chen Y-H (2014) Deferoxamine retinopathy: spectral domain-optical coherence tomography findings. BMC Ophthalmol 14(1):88

    PubMed  PubMed Central  Google Scholar 

  69. Gelman R, Kiss S, Tsang SH (2014) Multimodal imaging in a case of deferoxamine induced maculopathy. Retin Cases Brief Rep 8(4):306

    PubMed  PubMed Central  Google Scholar 

  70. Van Bol L, Alami A, Benghiat FS, Rasquin F (2014) Spectral domain optical coherence tomography findings in early deferoxamine maculopathy: report of two cases. Retin Cases Brief Rep 8(2):97–102

    PubMed  Google Scholar 

  71. Eleftheriadou M, Theodossiadis P, Rouvas A, Alonistiotis D, Theodossiadis G (2012) New optical coherence tomography fundus findings in a case of beta-thalassemia. Clin Ophthalmol (Auckland, NZ) 6:2119

    Google Scholar 

  72. Simon S, Athanasiov PA, Jain R, Raymond G, Gilhotra JS (2012) Desferrioxamine-related ocular toxicity: a case report. Indian J Ophthalmol 60(4):315

    PubMed  PubMed Central  Google Scholar 

  73. Viola F, Barteselli G, Dell’Arti L et al (2012) Abnormal fundus autofluorescence results of patients in long-term treatment with deferoxamine. Ophthalmology 119(8):1693–1700

    PubMed  Google Scholar 

  74. Arora A, Wren S, Gregory Evans K (2004) Desferrioxamine related maculopathy: a case report. Am J Hematol 76(4):386–388

    PubMed  Google Scholar 

  75. Meerpohl JJ, Antes G, Rücker G et al (2012) Deferasirox for managing iron overload in people with thalassaemia. Cochrane Database Syst Rev (2)

  76. Galanello R (2007) Deferiprone in the treatment of transfusion-dependent thalassemia: a review and perspective. Ther Clin Risk Manag 3(5):795

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Song D, Zhao L, Li Y et al (2014) The oral iron chelator deferiprone protects against systemic iron overload-induced retinal degeneration in hepcidin knockout mice. Invest Ophthalmol Vis Sci 55:4525–4532

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Gartaganis SP, Zoumbos N, Koliopoulos JX, Mela EK (2000) Contrast sensitivity function in patients with beta-thalassemia major. Acta Ophthalmol Scand 78(5):512–515

    CAS  PubMed  Google Scholar 

  79. Ghazanfari A, Jafarzadehpour E, Heydarian S, Dailami KN, Karami H (2018) Comparison of contrast sensitivity in β-thalassemia patients treated by deferoxamine or deferasirox. J Optom 12:168–173

    PubMed  PubMed Central  Google Scholar 

  80. Spyridon G, Ioannis A, Nikolaos C et al (2010) Contrast sensitivity in patients with beta-thalassemia major and sickle cell disease under regular transfusions and treatment with desferrioxamine. Open Ophthalmol J 4:39

    CAS  Google Scholar 

  81. Regan D, Neima D (1983) Low-contrast letter charts as a test of visual function. Ophthalmology 90(10):1192–1200

    CAS  PubMed  Google Scholar 

  82. Woods RL, Tregear SJ, Mitchell RA (1998) Screening for ophthalmic disease in older subjects using visual acuity and contrast sensitivity1. Ophthalmology 105(12):2318–2326

    CAS  PubMed  Google Scholar 

  83. Aminoff MJ (2012) Electrodiagnosis in clinical neurology. Elsevier, Amsterdam

    Google Scholar 

  84. Arden G, Fojas M (1962) Electrophysiological abnormalities in pigmentary degenerations of the retina: assessment of value and basis. Arch Ophthalmol 68(3):369–389

    CAS  PubMed  Google Scholar 

  85. Scholl HP, Zrenner E (2000) Electrophysiology in the investigation of acquired retinal disorders. Surv Ophthalmol 45(1):29–47

    CAS  PubMed  Google Scholar 

  86. Dettoraki M, Kattamis A, Ladas I et al (2017) Electrophysiological assessment for early detection of retinal dysfunction in beta-thalassemia major patients. Graefe’s Arch Clin Exp Ophthalmol 255(7):1349–1358

    CAS  Google Scholar 

  87. Economou M, Zafeiriou DI, Kontopoulos E et al (2006) Neurophysiologic and intellectual evaluation of beta-thalassemia patients. Brain Dev 28(1):14–18

    PubMed  Google Scholar 

  88. El-Shazly AA, Ebeid WM, Elkitkat RS, Deghedy MR (2017) Electroretinographic and visual-evoked potential changes in relation to chelation modality in children with thalassemia. Retina (Philadelphia, Pa) 37(6):1168–1175

    CAS  Google Scholar 

  89. Gelmi C, Borgna-Pignatti C, Franchin S, Tacchini M, Trimarchi F (1988) Electroretinographic and visual-evoked potential abnormalities in patients with beta-thalassemia major. Ophthalmologica 196(1):29–34

    CAS  PubMed  Google Scholar 

  90. Wong V, Li A, Lee A (1993) Neurophysiologic study of β-thalassemia patients. J Child Neurol 8(4):330–335

    CAS  PubMed  Google Scholar 

  91. Zafeiriou DI, Kousi AA, Tsantali CT et al (1998) Neurophysiologic evaluation of long-term desferrioxamine therapy in beta-thalassemia patients. Pediatr Neurol 18(5):420–424

    CAS  PubMed  Google Scholar 

  92. De Virgiliis S, Congia M, Turco M et al (1988) Depletion of trace elements and acute ocular toxicity induced by desferrioxamine in patients with thalassaemia. Arch Dis Child 63(3):250–255

    PubMed  PubMed Central  Google Scholar 

  93. Marciani M, Cianciulli P, Stefani N et al (1991) Toxic effects of high-dose deferoxamine treatment in patients with iron overload: an electrophysiological study of cerebral and visual function. Haematologica 76(2):131–134

    CAS  PubMed  Google Scholar 

  94. Aarabi B, Haghshenas M, Rakeii V (1998) Visual failure caused by suprasellar extramedullary hematopoiesis in beta thalassemia: case report. Neurosurgery 42(4):922–925

    CAS  PubMed  Google Scholar 

  95. Stamboulis E, Vlachou N, Drossou-Servou M et al (2004) Axonal sensorimotor neuropathy in patients with β-thalassaemia. J Neurol Neurosurg Psychiatry 75(10):1483–1486

    CAS  PubMed  PubMed Central  Google Scholar 

  96. Arden G, Wonke B, Kennedy C, Huehns E (1984) Ocular changes in patients undergoing long-term desferrioxamine treatment. Br J Ophthalmol 68(12):873–877

    CAS  PubMed  PubMed Central  Google Scholar 

  97. Jiang C, Hansen RM, Gee BE, Kurth SS, Fulton AB (1998) Rod and rod mediated function in patients with β-thalassemia major. Doc Ophthalmol 96(4):333–346

    PubMed  Google Scholar 

  98. Orton R, Sulh H (1985) Ocular and auditory toxicity of long-term, high-dose subcutaneous deferoxamine therapy. Can J Ophthalmol 20(4):153–156

    CAS  PubMed  Google Scholar 

  99. Haimovici R, D’Amico DJ, Gragoudas ES, Sokol S, Group DRS (2002) The expanded clinical spectrum of deferoxamine retinopathy. Ophthalmology 109(1):164–171

    PubMed  Google Scholar 

  100. Ravelli M, Scaroni P, Mombelloni S et al (1990) Acute visual disorders in patients on regular dialysis given desferrioxamine as a test. Nephrol Dial Transpl 5(11):945–949

    CAS  Google Scholar 

  101. Kertes PJ, Lee TK, Coupland SG (2004) The utility of multifocal electroretinography in monitoring drug toxicity: deferoxamine retinopathy. Can J Ophthalmol 39(6):656–661

    PubMed  Google Scholar 

  102. Rudd C, Evans PJ, Peeney A (1953) Ocular complications in thalassaemia minor. Br J Ophthalmol 37(6):353

    CAS  PubMed  PubMed Central  Google Scholar 

  103. Angelucci E, Brittenham GM, Mclaren CE et al (2000) Hepatic iron concentration and total body iron stores in thalassemia major. N Engl J Med 343(5):327–331

    CAS  PubMed  Google Scholar 

  104. Musallam KM, Cappellini MD, Taher AT (2013) Iron overload in β-thalassemia intermedia: an emerging concern. Curr Opin Hematol 20(3):187–192

    CAS  PubMed  Google Scholar 

  105. Musallam KM, Cappellini MD, Wood JC, Taher AT (2012) Iron overload in non-transfusion-dependent thalassemia: a clinical perspective. Blood Rev 26:S16–S19

    CAS  PubMed  Google Scholar 

  106. Tavazzi D, Duca L, Graziadei G, Comino A, Fiorelli G, Cappellini MD (2001) Membrane-bound iron contributes to oxidative damage of β-thalassaemia intermedia erythrocytes. Br J Haematol 112(1):48–50

    CAS  PubMed  Google Scholar 

  107. Varano M, Scassa C (1998) Scanning laser ophthalmoscope microperimetry. Semin ophthalmol 13(4):203–209

    CAS  PubMed  Google Scholar 

  108. Issa PC, Finger RP, Holz FG, Scholl HP (2009) Multimodal imaging including spectral domain OCT and confocal near infrared reflectance for characterization of outer retinal pathology in pseudoxanthoma elasticum. Invest Ophthalmol Vis Sci 50(12):5913–5918

    Google Scholar 

Download references

Funding

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohsen Heirani.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest.

Human and animal rights

Not applicable.

Informed consent

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Heydarian, S., Jafari, R., Dailami, K.N. et al. Ocular abnormalities in beta thalassemia patients: prevalence, impact, and management strategies. Int Ophthalmol 40, 511–527 (2020). https://doi.org/10.1007/s10792-019-01189-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10792-019-01189-3

Keywords

Navigation