Skip to main content

Advertisement

Log in

Increased choroidal thickness in primary angle closure measured by swept-source optical coherence tomography in Caucasian population

  • Original Paper
  • Published:
International Ophthalmology Aims and scope Submit manuscript

Abstract

Purpose

A role of the choroid has been suggested in the pathophysiology of angle closure. We assessed the choroidal thickness (CT) in Caucasian patients with primary angle closure (PAC) and in a subgroup of patients with plateau iris using swept-source optical coherence tomography (SS-OCT) compared to normal eyes.

Methods

This prospective cohort study in a hospital-based population in a tertiary center compared consecutive patients with PAC to healthy controls. A subgroup analysis of patients with plateau iris was also performed. Choroidal thickness was measured by SS-OCT in the subfoveal area (SFCT) and at 1- and 3-mm eccentricity superiorly, inferiorly, nasally and temporally from the fovea.

Results

Compared to the 25 eyes of 13 control patients [7 women, mean (SD) age, 56.6 (15.7) years], the 45 eyes of 25 patients with PAC [15 women, mean (SD) age, 55.7 (10.7) years] had a significantly increased SFCT. SFCT was 355.36 μm (SD 85.97) in PAC eyes versus 286.08 μm (SD 98.09) in control eyes (p = 0.009). The CT was also significantly increased compared to control eyes in other macular areas (p < 0.05), except at 3 mm temporal to the fovea. In the plateau iris subgroup, a not significant (except 3 mm nasal to the fovea) trend toward an increased CT was observed in all studied macular areas compared to control eyes.

Conclusion

In eyes of Caucasian patients with PAC, the CT is increased compared to controls. Increased CT could contribute to the pathophysiology of PAC with a possible choroidal expansion and dysfunction of choroidal ganglion cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Quigley HA, Broman AT (2006) The number of people with glaucoma worldwide in 2010 and 2020. Br J Ophthalmol 90:262–267. https://doi.org/10.1136/bjo.2005.081224

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Cheng J-W, Zong Y, Zeng Y-Y, Wei R-L (2014) The prevalence of primary angle closure glaucoma in adult Asians: a systematic review and meta-analysis. PLoS ONE 9:e103222. https://doi.org/10.1371/journal.pone.0103222

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Day AC, Baio G, Gazzard G et al (2012) The prevalence of primary angle closure glaucoma in European derived populations: a systematic review. Br J Ophthalmol 96:1162–1167. https://doi.org/10.1136/bjophthalmol-2011-301189

    Article  PubMed  Google Scholar 

  4. Kumar G, Bali SJ, Panda A et al (2012) Prevalence of plateau iris configuration in primary angle closure glaucoma using ultrasound biomicroscopy in the Indian population. Indian J Ophthalmol 60:175–178. https://doi.org/10.4103/0301-4738.95865

    Article  PubMed  PubMed Central  Google Scholar 

  5. Mansoori T, Sarvepally VK, Balakrishna N (2016) Plateau iris in primary angle closure glaucoma: an ultrasound biomicroscopy study. J Glaucoma 25:e82–86. https://doi.org/10.1097/IJG.0000000000000263

    Article  PubMed  Google Scholar 

  6. Mizoguchi T, Ozaki M, Wakiyama H, Ogino N (2015) Plateau iris in Japanese patients with primary angle closure and primary angle closure glaucoma. Clin Ophthalmol Auckl NZ 9:1159–1163. https://doi.org/10.2147/OPTH.S80724

    Article  Google Scholar 

  7. Leeungurasatien T, Radhakrishnan S, Porco T et al (2012) Plateau iris in Whites versus Asians. Eye Sci 27:13–18. https://doi.org/10.3969/j.issn.1000-4432.2012.01.003

    Article  PubMed  Google Scholar 

  8. George R, Paul PG, Baskaran M et al (2003) Ocular biometry in occludable angles and angle closure glaucoma: a population based survey. Br J Ophthalmol 87:399–402

    Article  CAS  Google Scholar 

  9. Chen Y-Y, Chen Y-Y, Sheu S-J, Chou P (2013) The biometric study in different stages of primary angle-closure glaucoma. Eye 27:1070–1076. https://doi.org/10.1038/eye.2013.127

    Article  PubMed  PubMed Central  Google Scholar 

  10. Congdon NG, Youlin Q, Quigley H et al (1997) Biometry and primary angle-closure glaucoma among Chinese, white, and black populations. Ophthalmology 104:1489–1495

    Article  CAS  Google Scholar 

  11. Quigley HA, Friedman DS, Congdon NG (2003) Possible mechanisms of primary angle-closure and malignant glaucoma. J Glaucoma 12:167–180

    Article  Google Scholar 

  12. Copete S, Flores-Moreno I, Montero JA et al (2014) Direct comparison of spectral-domain and swept-source OCT in the measurement of choroidal thickness in normal eyes. Br J Ophthalmol 98:334–338. https://doi.org/10.1136/bjophthalmol-2013-303904

    Article  PubMed  Google Scholar 

  13. Tan CS, Cheong KX, Lim LW, Sadda SR (2016) Comparison of macular choroidal thicknesses from swept source and spectral domain optical coherence tomography. Br J Ophthalmol 100:995–999. https://doi.org/10.1136/bjophthalmol-2015-307541

    Article  PubMed  Google Scholar 

  14. Hirata M, Tsujikawa A, Matsumoto A et al (2011) Macular choroidal thickness and volume in normal subjects measured by swept-source optical coherence tomography. Invest Ophthalmol Vis Sci 52:4971–4978. https://doi.org/10.1167/iovs.11-7729

    Article  PubMed  Google Scholar 

  15. Zhou M, Wang W, Huang W et al (2014) Is increased choroidal thickness association with primary angle closure? Acta Ophthalmol (Copenh) 92:e514–520. https://doi.org/10.1111/aos.12403

    Article  Google Scholar 

  16. Li Z, Wang W, Zhou M et al (2015) Enhanced depth imaging-optical coherence tomography of the choroid in moderate and severe primary angle-closure glaucoma. Acta Ophthalmol (Copenh) 93:e349–355. https://doi.org/10.1111/aos.12616

    Article  Google Scholar 

  17. Arora KS, Jefferys JL, Maul EA, Quigley HA (2012) The choroid is thicker in angle closure than in open angle and control eyes. Invest Ophthalmol Vis Sci 53:7813–7818. https://doi.org/10.1167/iovs.12-10483

    Article  PubMed  PubMed Central  Google Scholar 

  18. Foster PJ, Buhrmann R, Quigley HA, Johnson GJ (2002) The definition and classification of glaucoma in prevalence surveys. Br J Ophthalmol 86:238–242

    Article  Google Scholar 

  19. Foster PJ, Aung T, Nolan WP et al (2004) Defining “occludable” angles in population surveys: drainage angle width, peripheral anterior synechiae, and glaucomatous optic neuropathy in east Asian people. Br J Ophthalmol 88:486–490

    Article  CAS  Google Scholar 

  20. Kim YY, Jung HR (1997) Clarifying the nomenclature for primary angle-closure glaucoma. Surv Ophthalmol 42:125–136

    Article  CAS  Google Scholar 

  21. Kumar RS, Tantisevi V, Wong MH et al (2009) Plateau iris in Asian subjects with primary angle closure glaucoma. Arch Ophthalmol Chic Ill 1960 127:1269–1272. https://doi.org/10.1001/archophthalmol.2009.241

    Article  Google Scholar 

  22. Congdon N, Wang F, Tielsch JM (1992) Issues in the epidemiology and population-based screening of primary angle-closure glaucoma. Surv Ophthalmol 36:411–423

    Article  CAS  Google Scholar 

  23. Day AC, Baio G, Gazzard G et al (2012) The prevalence of primary angle closure glaucoma in European derived populations: a systematic review. Br J Ophthalmol 96:1162–1167. https://doi.org/10.1136/bjophthalmol-2011-301189

    Article  PubMed  Google Scholar 

  24. Shen L, Melles RB, Metlapally R et al (2016) The association of refractive error with glaucoma in a multiethnic population. Ophthalmology 123:92–101. https://doi.org/10.1016/j.ophtha.2015.07.002

    Article  PubMed  Google Scholar 

  25. Lowe RF (1970) Aetiology of the anatomical basis for primary angle-closure glaucoma. Biometrical comparisons between normal eyes and eyes with primary angle-closure glaucoma. Br J Ophthalmol 54:161–169

    Article  CAS  Google Scholar 

  26. Huang W, Wang W, Gao X et al (2013) Choroidal thickness in the subtypes of angle closure: an EDI-OCT study. Invest Ophthalmol Vis Sci 54:7849–7853. https://doi.org/10.1167/iovs.13-13158

    Article  PubMed  Google Scholar 

  27. Chen X, Hui X, Guo X (2014) Choroidal thickness of macular and peripapillary area in malignant glaucoma. Chin J Ocluar Fundus Dis 30:578–582

  28. Quigley HA, Friedman DS, Congdon NG (2003) Possible mechanisms of primary angle-closure and malignant glaucoma. J Glaucoma 12:167–180

    Article  Google Scholar 

  29. May CA, Fuchs AV, Scheib M, Lütjen-Drecoll E (2002) Characterization of nitrergic neurons in the porcine and human ciliary nerves. Invest Ophthalmol Vis Sci 43:581–586

    PubMed  Google Scholar 

  30. May CA, Hayreh SS, Furuyoshi N et al (1997) Choroidal ganglion cell plexus and retinal vasculature in monkeys with laser-induced glaucoma. Ophthalmol J Int Ophtalmol Int J Ophthalmol Z Augenheilkd 211:161–171

    CAS  Google Scholar 

  31. May CA, Lütjen-Drecoll E (2004) Choroidal ganglion cell changes in human glaucomatous eyes. J Glaucoma 13:389–395

    Article  Google Scholar 

Download references

Funding

None. AVOPH (association for vision of the Department of Ophthalmology, Avicenne Hospital, Bobigny, France) paid for translation edition fees and will pay in case of publication fees.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Audrey Giocanti-Aurégan.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Informed consent

Signed by patients.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nguyen, DT., Giocanti-Aurégan, A., Benhatchi, N. et al. Increased choroidal thickness in primary angle closure measured by swept-source optical coherence tomography in Caucasian population. Int Ophthalmol 40, 195–203 (2020). https://doi.org/10.1007/s10792-019-01171-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10792-019-01171-z

Keywords

Navigation