Skip to main content

Advertisement

Log in

Swept source-OCT and swept source-OCT angiography findings in posterior microphthalmos

  • Original Paper
  • Published:
International Ophthalmology Aims and scope Submit manuscript

Abstract

Purpose

To describe swept source-OCT (SS-OCT) and swept source-OCT angiography (SS-OCTA) findings in eyes with posterior microphthalmos (PM).

Methods

Twelve eyes (six patients) with PM were evaluated using SS-OCT and SS-OCTA. Structural changes, subfoveal choroidal thickness (SFCT), and perifoveal capillary changes with qualitative and quantitative assessments were analyzed. Twenty eyes served as control group.

Results

SS-OCT findings included elevated retinal papillo-macular fold (75%), retinal pigment epithelium folds (83%), macular cystoid spaces (42%), subretinal fluid (17%), and increased visibility of posterior vitreous cortex and hyaloid (42%). Mean SFCT in PM and in control eyes were 430.33 ± 157.48 µm and 290.05 ± 52.87 µm, respectively (p = 0.004). Perifoveal capillary changes on SS-OCTA included foveal avascular zone (FAZ) remodeling (100%), vessel tortuosity (67%), disorganization of the deep capillary network (67%), intraretinal cystoid spaces (42%), and areas of signal voids in the choriocapillaris (33%). FAZ area was significantly smaller in eyes with PM than in the control group in both the superficial (p < 0.001) and deep capillary plexuses (p = 0.001). Capillary vessel density (CVD) was significantly lower in the PM than in the control group in the deep capillary plexus (p = 0.004). Log MAR BCVA correlated negatively with axial length (r = − 0.929, p < 0.001), FAZ area in both the superficial (r = − 0.637, p < 0.001) and deep capillary plexus (r = − 0.561, p = 0002), and CVD in the deep capillary plexus (r = − 0.450, p = 0.016).

Conclusions

Combined SS-OCT and SS-OCTA allow the detection of various retinal and choroidal structural and microvascular changes in eyes with PM. These findings can provide new insights onto this blinding ocular condition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Spitznas M, Gerke E, Bateman VB (1983) Hereditary posterior microphthalmos with papillomacular fold and high hyperopia. Arch Ophthalmol 101:413–417

    Article  CAS  PubMed  Google Scholar 

  2. Boynton JR, Purnell EW (1975) Bilateral microphthalmos without microcornea associated with unusual papillomacular retinal folds and high hyperopia. Am J Ophthalmol 79:820–826

    Article  CAS  PubMed  Google Scholar 

  3. Khairallah M, Messaoud R, Zaouali S, Ben Yahia S, Ladjimi A, Jenzri S (2002) Posterior segment changes associated with posterior microphthalmos. Ophthalmology 109:569–574

    Article  PubMed  Google Scholar 

  4. Walsh MK, Goldberg MF (2007) Abnormal foveal avascular zone in nanophthalmos. Am J Ophthalmol 143:1067–1068

    Article  PubMed  Google Scholar 

  5. Nowilaty SR, Mousa A, Ghazi NG (2013) The posterior pole and papillomacular fold in posterior microphthalmos: novel spectral-domain optical coherence tomography findings. Ophthalmology 120:1656–1664

    Article  PubMed  Google Scholar 

  6. Nowilaty SR, Khan AO, Aldahmesh MA, Tabbara KF, Al-Amri A, Alkuraya FS (2013) Biometric and molecular characterization of clinically diagnosed posterior microphthalmos. Am J Ophthalmol 155:361–372.e7

    Article  PubMed  Google Scholar 

  7. Jackson TE, Yang YC, Shun-Shin GA (2012) Spectral domain optical coherence tomography findings in retinal folds associated with posterior microphthalmos. J AAPOS 16:389–391

    Article  PubMed  Google Scholar 

  8. Aras C, Ozdamar A, Ustundag C, Ozkan S (2005) Optical coherence tomographic features of papillomacular fold in posterior microphthalmos. Retina 25:665–667

    Article  PubMed  Google Scholar 

  9. Kumar M, Das T, Kesarwani S (2012) Spectral domain optical coherence tomography finding in posterior microphthalmos. Clin Exp Optom 95:651–652

    Article  PubMed  Google Scholar 

  10. Liu JJ, Chen YY, Zhang X, Zhao PQ (2018) Clinical features of posterior microphthalmic and nanophthalmic eyes. Int J Ophthalmol 11:1829–1834

    PubMed  PubMed Central  Google Scholar 

  11. Spaide RF, Fujimoto JG, Waheed NK, Sadda SR, Staurenghi G (2018) Optical coherence tomography angiography. Prog Retin Eye Res 64:1–55

    Article  PubMed  Google Scholar 

  12. Kim AY, Chu Z, Shahidzadeh A, Wang RK, Puliafito CA, Kashani AH (2016) Quantifying microvascular density and morphology in diabetic retinopathy using spectral-domain optical coherence tomography angiography. Invest Ophthalmol Vis Sci 57:OCT362–OCT370

    Article  PubMed  PubMed Central  Google Scholar 

  13. Pichi F, Sarraf D, Arepalli S et al (2017) The application of optical coherence tomography angiography in uveitis and inflammatory eye diseases. Prog Retin Eye Res 59:178–201

    Article  PubMed  Google Scholar 

  14. Otsu N (1979) A threshold selection method from gray-level histograms. IEEE Trans Syst Man Cybern 9:62–66

    Article  Google Scholar 

  15. Al-Sheikh M, Phasukkijwatana N, Dolz-Marco R et al (2017) Quantitative OCT angiography of the retinal microvasculature and the choriocapillaris in myopic eyes. Invest Ophthalmol Vis Sci 58:2063–2069

    Article  PubMed  Google Scholar 

  16. Demircan A, Altan C, Osmanbasoglu OA et al (2014) Subfoveal choroidal thickness measurements with enhanced depth imaging optical coherence tomography in patients with nanophthalmos. Br J Ophthalmol 98:345–349

    Article  PubMed  Google Scholar 

  17. Matsuo Y, Sakamoto T, Yamashita T et al (2013) Comparisons of choroidal thickness of normal eyes obtained by two different spectral-domain OCT instruments and one swept-source OCT instrument. Invest Ophthalmol Vis Sci 54:7630–7636

    Article  PubMed  Google Scholar 

  18. Ikuno Y, Maruko I, Yasuno Y et al (2011) Reproducibility of retinal and choroidal thickness measurements in enhanced depth imaging and high-penetration optical coherence tomography. Invest Ophthalmol Vis Sci 52:5536–5540

    Article  PubMed  Google Scholar 

  19. Tan CS, Ngo WK, Cheong KX (2015) Comparison of choroidal thicknesses using swept source and spectral domain optical coherence tomography in diseased and normal eyes. Br J Ophthalmol 99:354–358

    Article  PubMed  Google Scholar 

  20. Chee SP, Chan SN, Jap A (2017) Comparison of enhanced depth imaging and swept source optical coherence tomography in assessment of choroidal thickness in Vogt–Koyanagi–Harada disease. Ocul Immunol Inflamm 25:528–532

    Article  PubMed  Google Scholar 

  21. Brockhurst RJ (1975) Nanophthalmos with uveal effusion. A new clinical entity. Arch Ophthalmol 93:1989–1999

    CAS  Google Scholar 

  22. Gass JD (1983) Uveal effusion syndrome: a new hypothesis concerning pathogenesis and technique of surgical treatment. Trans Am Ophthalmol Soc 81:246–260

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Faulborn J, Kölli H (1999) Sclerotomy in uveal effusion syndrome. Retina 19:504–507

    Article  CAS  PubMed  Google Scholar 

  24. Kong M, Kim JH, Kim SJ, Kang SW (2013) Full-thickness sclerotomy for uveal effusion syndrome. Korean J Ophthalmol 27:294–298

    Article  PubMed  PubMed Central  Google Scholar 

  25. Demircan A, Yesilkaya C, Altan C, Alkin Z, Yasa D, Aygit ED, Bektasoglu D (2018) Foveal avascular zone area measurements with optical coherence tomography angiography in patients with nanophthalmos. Eye (Lond). https://doi.org/10.1038/s41433-018-0236-7

    Article  Google Scholar 

  26. Mansour AM, Stewart MW, Yassine SW et al (2018) Unmeasurable small size superficial and deep foveal avascular zone in nanophthalmos: the Collaborative Nanophthalmos OCTA Study. Br J Ophthalmol. https://doi.org/10.1136/bjophthalmol-2018-312781

    Article  PubMed  Google Scholar 

  27. Wei WB, Xu L, Jonas JB et al (2013) Subfoveal choroidal thickness: the Beijing Eye Study. Ophthalmology 120:175–180

    Article  PubMed  Google Scholar 

  28. Ikuno Y, Kawaguchi K, NouchiT Yasuno Y (2010) Choroidal thickness in healthy Japanese subjects. Invest Ophthalmol Vis Sci 51:2173–2176

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This work has been supported by the Ministry of Higher Education and Research of Tunisia.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Moncef Khairallah.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abroug, N., Ksiaa, I., Lupidi, M. et al. Swept source-OCT and swept source-OCT angiography findings in posterior microphthalmos. Int Ophthalmol 39, 2709–2719 (2019). https://doi.org/10.1007/s10792-019-01115-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10792-019-01115-7

Keywords

Navigation