Structural features of eyelid connective tissue in patients with primary open-angle glaucoma



To study the connective tissue (CT) structure of upper eyelid skin of primary open-angle glaucoma (POAG) patients.

Patients and methods

Forty-seven patients aged 47–91 expecting blepharoplasty formed 3 groups: group 1 [16 subjects without POAG, median age 55 years (interquartile range 54–55.5)], group 2 [12 subjects without POAG, median age 73 (72–76.5)], and group 3 [(19 subjects with POAG, median age 74 (70–80.5)]. Age differences between groups 1 and 2 and groups 1 and 3 are significant (p < 0.05). Thermodynamic parameters of skin samples taken during blepharoplasty: Endothermic peak (\(T_{d}\), °C) and denaturation enthalpy (\(\Delta H_{d}\), J/g of dry weight) were determined using differential scanning calorimetry.


\(\Delta H_{d}\) and \(T_{d}\) in groups 1–3 were, respectively, 8.41 (7.42–10.25) and 66.55 (59.9–66.7); 7.10 (5.76–10.17) and 67.35 (67.0–68.03); 11.40 (9.0–14.9) and 67.70 (67.05–68.45). \(T_{d}\) differences between groups 1 and 2 are significant (p < 0.05), and Spearman’s correlation between the age and \(T_{d}\) is direct, medium (R = 0.638) and significant. \(\Delta H_{d}\) in group 3 is significantly higher than in group 2. \(\Delta H_{d}\) and \(T_{d}\) in patients without POAG (groups 1 and 2) and those with POAG (group 3) are, respectively, 7.79 (6.9–10.17) and 66.6 (61.2–67,3); 11.40 (9.0–14.9); 67.7 (67.05–68.45); the respective differences are significant.


Patients without POAG show a significant increase in \(T_{d}\) with age, while \(\Delta H_{d}\) slightly decreases. In POAG, \(\Delta H_{d}\) is significantly higher and \(T_{d}\) tends to grow, which may indicate structural changes in eyelid CT (collagen accumulation and cross-linking level rise). Since the upper lid is unaffected by increasing IOP directly, the changes may be viewed as manifestations of systemic CT pathology.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8


  1. 1.

    Neroev VV, Kiseleva OA, Bessmertny AM (2013) The main results of a multicenter study of epidemiological characteristics of primary open angle glaucoma in the Russian Federation. Rus Ophthalmol J 3(6):4–7 (in Russian)

    Google Scholar 

  2. 2.

    Quigley HA, Broman AT (2006) Number of people with glaucoma worldwide in 2010 and 2020. Br J Ophthalmol 90(3):262–267.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. 3.

    Vajaranant TS, Wu S, Torres M, Varma R (2012) The changing face of primary open-angle glaucoma: demographic and geographic changes from 2011–2050. Am J Ophthalmol 154(2):303–314.

    Article  PubMed  PubMed Central  Google Scholar 

  4. 4.

    Starikova DI, Churnosov MI (2017) Modern views on the molecular basis of etiopathogenesis of primary open angle glaucoma. Fyodorov J Ophthalm Surg 3:80–88 (in Russian)

    Article  Google Scholar 

  5. 5.

    Quigley HA (2005) Glaucoma: macrocosm to microcosm the Friedenwald lecture. Investig Ophthalmol Vis Sci 46:2662–2670.

    Article  Google Scholar 

  6. 6.

    Barton K, Hitchings RA (2013) Medical management of glaucoma. Springer Healthcare, London

    Google Scholar 

  7. 7.

    Erb C (2017) Glaucoma progression: risk factors, diagnostic and treatment strategies, 1st edn. UNI-MED, Berlin

    Google Scholar 

  8. 8.

    Strakhov VV, Alekseev VV (2009) The pathophysiology of a primary glaucoma: “all or nothing”. Glaucoma 2:40–52 (in Russian)

    Google Scholar 

  9. 9.

    Svetikova LA, Iomdina EN, Kiseleva OA (2013) Biomechanical and biochemical parameters of the corneoscleral capsule of patients with primary open-angle glaucoma. Rus Ophthalmol J 2:105–110 (in Russ.)

    Google Scholar 

  10. 10.

    Quigley HA, Cone FE (2013) Development of diagnostic and treatment strategies for glaucoma through understanding and modification of scleral and lamina cribrosa connective tissue. Cell Tissue Res 353(2):231–244.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. 11.

    Coudrillier B, Pijanka JK, Jefferys JL, Goel A, Quigley HA, Boote C, Nguyen TD (2015) Glaucoma related changes in the mechanical properties and collagen micro-architecture of the human sclera. PLoS ONE 10(7):e0131396.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. 12.

    Iomdina EN, Ignatieva NYu, Danilov NA, Arutiunian LL, Kiseleva OA, Nazarenko LA (2011) Biochemical, structural and biomechanical features of human scleral matrix in primary open-angle glaucoma. Vestn oftalmol 6:10–14 (in Russian)

    Google Scholar 

  13. 13.

    Quigley HA (2015) The contribution of the sclera and lamina cribrosa to the pathogenesis of glaucoma: diagnostic and treatment implications. Prog Brain Res 220:59–86.

    Article  PubMed  Google Scholar 

  14. 14.

    Downs JC (2015) Optic nerve head biomechanics in aging and disease. Exp Eye Res 133:19–29.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. 15.

    Coudrillier B, Tian J, Alexander S, Myers KM, Quigley HA, Nguyen TD (2012) Biomechanics of the human posterior sclera: age- and glaucoma-related changes measured using inflation testing. Investig Ophthalmol Vis Sci 53(4):1714–1728.

    Article  Google Scholar 

  16. 16.

    Geraghty B, Jones SW, Rama P, Akhtar R, Elsheikh A (2012) Age-related variations in the biomechanical properties of human sclera. J Mech Behav Biomed Mater 16:181–191.

    Article  PubMed  Google Scholar 

  17. 17.

    Zatulina NI (1978) Comparative study of the eye drainage system in physiological aging and in primary glaucoma. In: Morphological basis of clinical and experimental ophthalmology. Moscow, pp 17–18 (in Russian)

  18. 18.

    Vranka JA, Kelley MJ, Acott TS, Keller KE (2015) Extracellular matrix in the trabecular meshwork: intraocular pressure regulation and dysregulation in glaucoma. Exp Eye Res 133:112–125.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. 19.

    Acott TS, Kelley MJ (2008) Extracellular matrix in the trabecular meshwork. Exp Eye Res 86(4):543–561.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. 20.

    Iomdina EN, Kiseleva OA, Svetikova LA, Lyubimov GA, Moiseeva IN, Stein AA (2014) A new algorithm estimating hydrodynamic parameters of a glaucomatous eye. Vestn oftalmol 4:8–13 (in Russ.)

    Google Scholar 

  21. 21.

    Jones HJ, Girard MJ, White N, Fautsch MP, Morgan JE, Ethier CR, Albon J (2015) Quantitative analysis of three-dimensional fibrillar collagen microstructure within the normal, aged and glaucomatous human optic nerve head. J R Soc Interface 12(106):20150066.

    Article  PubMed  PubMed Central  Google Scholar 

  22. 22.

    Iomdina EN, Bauer SM, Kotliar KE (2015) Eye biomechanics: theoretical aspects and clinical applications. Real Time, Moscow (in Russian)

    Google Scholar 

  23. 23.

    Iomdina EN, Arutyunyan LL, Ignatieva NYu (2016) A comparative study of age-related level of sclera collagen crosslinking in patients with different stages of primary open angle glaucoma. Rus Ophthalmol J 9(1):20–28 (in Russ.)

    Google Scholar 

  24. 24.

    Danilov NA, Ignatieva NYu, Iomdina EN, Arutyunyan LL, Grokhovskaya TE, Lunin VV (2011) Sclera of the Glaucomatous eye: physicochemical analysis. Biophysics 56:490–495

    Article  Google Scholar 

  25. 25.

    Iomdina EN, Tarutta EP, Markosyan GA, Aksenova YuM, Kruzhkova GV, Ivashchenko ZhN, Smirnova TS, Bedretdinov AN (2013) Biomechanical characteristics of the corneoscleral tunic and the state of the connective tissue system in the children and adolescents presenting with various forms of progressive myopia. Rus Pediatr Ophthalmol 1:18–23 (in Russian)

    Google Scholar 

  26. 26.

    Iomdina EN, Tarutta EP, Markossian GA, Aksenova YuM, Smirnova TS, Bedretdinov AN (2015) Sclera as the target tissue in progressive myopia. Pomeranian J Life Sci 61(2):146–152.

    Article  PubMed  Google Scholar 

  27. 27.

    Siordia JA, Franco J, Golden TR, Dar B (2016) Ocular pseudoexfoliation syndrome linkage to cardiovascular disease. Curr Cardiol Rep 18(7):61.

    Article  PubMed  Google Scholar 

  28. 28.

    Wirostko BM, Curtin K, Ritch R, Thomas S, Allen-Brady K, Smith KR, Hageman GS, Allingham RR (2016) Risk for exfoliation syndrome in women with pelvic organ prolapse: a Utah project on exfoliation syndrome (UPEXS) Study. JAMA Ophthalmol 134(11):1255–1262.

    Article  PubMed  Google Scholar 

  29. 29.

    Chan TCW, Bala C, Siu A, Wan F, White A (2017) Risk factors for rapid glaucoma disease progression. Am J Ophthalmol 180:151–157.

    Article  PubMed  Google Scholar 

  30. 30.

    Gomes BF, Souza R, Valadão T, Kara-Junior N, Moraes HV, Santhiago MR (2017) Is there an association between glaucoma and capillaroscopy in patients with systemic sclerosis? Int Ophthalmol 38:251–256.

    Article  PubMed  Google Scholar 

  31. 31.

    Ashworth J, Flaherty M, Pitz S, Ramlee A (2015) Assessment and diagnosis of suspected glaucoma in patients with mucopolysaccharidosis. Acta Ophthalmol 93(2):111–117.

    Article  Google Scholar 

  32. 32.

    Eroshevsky TI, Sviatkovskaya TY (1977) A study of oxyproline content in blood serum of healthy persons and patients with primary glaucoma at various age. Oftalmol Zh. 2:101–103 (in Russian)

    Google Scholar 

  33. 33.

    Eroshevsky TI, Sviatkovskaya TY (1979) Collagen metabolism in patients with primary glaucoma. Oftalmol Zh 1:21–25 (in Russian)

    Google Scholar 

  34. 34.

    Eroshevsky TI, Sviatkovskaya TY (1984) Changes in collagenic metabolism depending of primary open-angle glaucoma. Oftalmol Zh 8:475–478 (in Russian)

    Google Scholar 

  35. 35.

    Svetikova LA, Iomdina EN, Ignatieva NYu, Serik AN, Migal SF, Ivanchenko OV, Nazarova NA (2016) A study of structural properties of eyelid connective tissue in patients with primary open-angle glaucoma. Rus J Glaucoma. 15(4):12–18 (in Russian)

    Google Scholar 

  36. 36.

    Krieg T, Aumailley M (2011) The extracellular matrix of the dermis: flexible structures with dynamic functions. Exp Dermatol 20:689–695.

    Article  CAS  PubMed  Google Scholar 

  37. 37.

    Wiegand N, Naumov I, Vamhidy L, Kereskai L, Lorinczy D, Nöt LG (2013) Comparative calorimetric analysis of 13 different types of human healthy and pathologic collagen tissues. Thermochim Acta 568:171–174.

    Article  CAS  Google Scholar 

  38. 38.

    Ignatieva NYu, Lunin VV, Averkiev SV, Maiorova AF, Bagratashvili VN, Sobol EN (2004) DSC investigation of connective tissues treated by IR-laser radiation. Thermochim Acta 422(2):43–48

    Article  CAS  Google Scholar 

  39. 39.

    Tang R, Samouillan V, Dandurand J, Lacabanne C, Lacoste-Ferre M-H, Bogdanowicz P, Bianchi P, Villaret A, Nadal-Wollbold F (2017) Identification of ageing biomarkers in human dermis biopsies by thermal analysis (DSC) combined with Fourier transform infrared spectroscopy (FTIR/ATR). Skin Res Technol 23(4):573–580.

    Article  CAS  PubMed  Google Scholar 

  40. 40.

    Tan J, Berke S (2013) Latanoprost-induced prostaglandin-associated periorbitopathy. Optom Vis Sci 90(9):245–247

    Article  Google Scholar 

  41. 41.

    Kent TL, Custer PL (2017) Structural and histologic eyelid changes associated with 6 months of topical bimatoprost in the rabbit. J Glaucoma 26(3):253–257.

    Article  PubMed  Google Scholar 

  42. 42.

    Peplinski LS, Albiani Smith K (2004) Deepening of lid sulcus from topical bimatoprost therapy. Optom Vis Sci 81:574–577

    Article  PubMed  Google Scholar 

  43. 43.

    Yang HK, Park KH, Kim TW, Kim DM (2009) Deepening of eyelid superior sulcus during topical travoprost treatment. Jpn J Ophthalmol 53:176–179

    Article  CAS  PubMed  Google Scholar 

  44. 44.

    Flandin F, Buffevant C, Herbage D (1984) A differential scanning calorimetry analysis of the age-related changes in the thermal stability of rat skin collagen. Biochim Biophys Acta 791:205–211

    Article  CAS  PubMed  Google Scholar 

  45. 45.

    Gill P, Moghadam TT, Ranjbar B (2010) Differential scanning calorimetry techniques: applications in biology and nanoscience. J Biomol Tech 21(4):167–193

    PubMed  PubMed Central  Google Scholar 

  46. 46.

    Fratzl P (2008) Collagen: structure and mechanics. Springer, Potsdam

    Google Scholar 

  47. 47.

    Ignatieva NYu, Danilov NA, Lunin VV, Obrezkova MV, Averkiev SV, Chaikovskii TI (2007) The change of thermodynamic parameters of collagen denaturation of eye tissues due non-enzymatic glycation. Mosc Univ Chem Bull 48:75–79 (in Russian)

    CAS  Google Scholar 

  48. 48.

    Iomdina EN, Arutyunyan LL, Ignatieva NYu (2016) Structural and biomechanical properties of tenon capsule of the in primary open-angle glaucoma. Nov Glaucomy 1:101–103 (in Russian)

    Google Scholar 

Download references


The authors report no commercial relationship existed in the form of financial support or personal financial interest.

Author information



Corresponding author

Correspondence to L. A. Svetikova.

Ethics declarations

Conflict of interest

The authors report no conflicts of interest. The authors alone are responsible for the content and writing of the paper.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Svetikova, L.A., Iomdina, E.N., Ignatyeva, N.Y. et al. Structural features of eyelid connective tissue in patients with primary open-angle glaucoma. Int Ophthalmol 39, 2005–2014 (2019).

Download citation


  • Glaucoma
  • Collagen
  • Cross-links
  • Connective tissue
  • Eyelid skin