Advertisement

Confocal scanning laser microscopy in patients with postoperative endophthalmitis

  • T. Fiore
  • G. Torroni
  • B. Iaccheri
  • A. Cerquaglia
  • M. Lupidi
  • F. Giansanti
  • C. Cagini
Original Paper
  • 74 Downloads

Abstract

Purpose

To investigate alterations of corneal layers in eyes treated for acute postoperative endophthalmitis.

Methods

In this retrospective, nonrandomized comparative study, eyes treated with 25 gauge pars plana vitrectomy (PPV) for acute post-cataract endophthalmitis (group A) were compared to eyes receiving uneventful cataract surgery (group B) and uneventful 25 gauge PPV for epiretinal membrane (group C). After a minimum follow-up of 8 months from last surgical procedure, laser scanning in vivo confocal microscopy (IVCM) was performed.

Results

Twelve eyes for each group were recruited. Comparing study eyes with control eyes of group B and C, no statistical difference was found in corneal epithelial cell density (p = n.s.), in density of nerve fibers (p = n.s.), mean grade of nerve reflectivity (p = n.s.), mean grade of nerve tortuosity (p = n.s.), mean grade of anterior keratocyte activation (p = n.s.), and corneal endothelium cell density (p = n.s.), whereas a statistically higher mean grade of posterior keratocyte activation was found in group A (p < 0.01). Epithelial and endothelial corneal morphologies were graded as regular in all groups. Langerhans cells and corneal dendritic-shaped hyper-reflective endothelial deposits were found in group A. Both findings were absent in group B and C, and the difference was statistically significant (p < 0.01).

Conclusions

IVCM was a useful tool in the detection of microscopic chronic corneal abnormalities caused by postoperative endophthalmitis. These findings confirmed the presence of a subclinical chronic corneal inflammation localized to the posterior stroma that should be related to the infectious process. Future studies might clarify pathological processes in the acute phase of postoperative endophthalmitis.

Keywords

Confocal scanning laser microscopy Confocal microscopy Endophthalmitis Postoperative endophthalmitis Cornea 

Notes

Compliance with ethical standards

Conflict of interest

All authors certify that they have no affiliations with or involvement in any organization or entity with any financial interest (such as honoraria; educational grants; participation in speakers’ bureaus; membership, employment, consultancies, stock ownership, or other equity interest; and expert testimony or patent-licensing arrangements), or nonfinancial interest (such as personal or professional relationships, affiliations, knowledge or beliefs) in the subject matter or materials discussed in this manuscript.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional research committee (Perugia IEC) and with the 1964 Helsinki Declaration and its later amendments or comparable ethical standards.

Informed consent

Informed consent was obtained from all individual participants included in the study.

References

  1. 1.
    Endophthalmitis Vitrectomy Study Group (1995) Results of the endophthalmitis vitrectomy study: a randomized trial of immediate vitrectomy and of intravenous antibiotics for the treatment of postoperative bacterial endophthalmitis. Arch Ophthalmol 113:1479–1496CrossRefGoogle Scholar
  2. 2.
    Kuhn F, Gini G (2006) Vitrectomy for endophthalmitis. Ophthalmolgy 113(4):714CrossRefGoogle Scholar
  3. 3.
    Barry P, Cordovés L, Gardner S (2013) ESCRS guidelines for prevention and treatment of endophthalmitis following cataract surgery: data, dilemmas and conclusions. http://www.escrs.org/downloads/Endophthalmitis-Guidelines.pdf. Accessed 2013
  4. 4.
    Zinkernagel MS, Dysli C, Wolf S, Ebneter A (2014) Spectral-domain optical coherence tomography findings after severe exogenous endophthalmitis. Ocul Immunol Inflamm 22(6):439–443CrossRefPubMedGoogle Scholar
  5. 5.
    Maneschg OA, Volek E, Németh J et al (2014) Spectral domain optical coherence tomography in patients after successful management of postoperative endophthalmitis following cataract surgery by pars plana vitrectomy. BMC Ophthalmol 2(14):76CrossRefGoogle Scholar
  6. 6.
    Camargo Siqueira R, Degasperi A, Gil C et al (2009) Pars plana vitrectomy and silicone oil tamponade for acute endophthalmitis treatment. Arq Bras Oftalmol 72(1):28–32CrossRefGoogle Scholar
  7. 7.
    De Cillà S, Fogagnolo P, Sacchi M et al (2014) Corneal involvement in uneventful cataract surgery: an in vivo confocal microscopy study. Ophthalmologica 231(2):103–110CrossRefPubMedGoogle Scholar
  8. 8.
    Iaccheri B, Torroni G, Cagini C et al (2017) Corneal confocal scanning laser microscopy in patients with dry eye disease treated with topical cyclosporine. Eye (Lond).  https://doi.org/10.1038/eye.2017.3 Google Scholar
  9. 9.
    Klais CM, Bühren J, Kohnen T (2003) Comparison of endothelial cell count using confocal and contact specular microscopy. Ophthalmologica 217(2):99–103CrossRefPubMedGoogle Scholar
  10. 10.
    Oliveira-Soto L, Efron N (2001) Morphology of corneal nerves using confocal microscopy. Cornea 20(4):374–384CrossRefPubMedGoogle Scholar
  11. 11.
    Villani E, Galimberti D, Viola F et al (2007) The cornea in Sjogren’s syndrome: an in vivo confocal study. Investig Ophthalmol Vis Sci 48(5):2017–2022CrossRefGoogle Scholar
  12. 12.
    Zhivov A, Stave J, Vollmar B, Guthoff R (2005) In vivo confocal microscopic evaluation of Langerhans cell density and distribution in the normal human corneal epithelium. Graefes Arch Clin Exp Ophthalmol 243(10):1056–1061CrossRefPubMedGoogle Scholar
  13. 13.
    Machetta F, Fea AM, Actis AG et al (2014) In vivo confocal microscopic evaluation of corneal langerhans cells in dry eye patients. Open Ophthalmol J 8:51–59CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Marsovszky L, Resch MD, Visontai Z et al (2014) Confocal microscopy of epithelial and langerhans cells of the cornea in patients using travoprost drops containing two different preservatives. Pathol Oncol Res 20(3):741–746CrossRefPubMedGoogle Scholar
  15. 15.
    Marsovszky L, Németh J, Resch MD et al (2014) Corneal Langerhans cell and dry eye examinations in ankylosing spondylitis. Innate Immun 20(5):471–477CrossRefPubMedGoogle Scholar
  16. 16.
    Marsovszky L, Resch MD, Németh J et al (2013) In vivo confocal microscopic evaluation of corneal Langerhans cell density, and distribution and evaluation of dry eye in rheumatoid arthritis. Innate Immun 19(4):348–354CrossRefPubMedGoogle Scholar
  17. 17.
    Resch MD, Zemova E, Marsovszky L et al (2015) In vivo confocal microscopic imaging of the cornea after femtosecond and excimer laser-assisted penetrating keratoplasty. J Refract Surg 31(9):620–626CrossRefPubMedGoogle Scholar
  18. 18.
    Labbé A, Dupas B, Offret H et al (2009) Evaluation of keratic precipitates and corneal endothelium in Fuchs’ heterochromic cyclitis by in vivo confocal microscopy. Br J Ophthalmol 93(5):673–677CrossRefPubMedGoogle Scholar
  19. 19.
    Nubile M, Dua HS, Lanzini TE et al (2008) Amniotic membrane transplantation for the management of corneal epithelial defects: an in vivo confocal microscopic study. Br J Ophthalmol 92(1):54–60CrossRefPubMedGoogle Scholar
  20. 20.
    Le Q, Wang X, Lv J et al (2012) In vivo laser scanning confocal microscopy of the cornea in patients with silicone oil tamponade after vitreoretinal surgery. Cornea 31(8):876–882CrossRefPubMedGoogle Scholar
  21. 21.
    Chen WL, Lin CT, Ko PS et al (2009) In vivo confocal microscopic findings of corneal wound healing after corneal epithelial debridement in diabetic vitrectomy. Ophthalmology 116(6):1038–1047CrossRefPubMedGoogle Scholar
  22. 22.
    Benítez del Castillo JM, Wasfy MA, Fernandez C et al (2004) An in vivo confocal masked study on corneal epithelium and subbasal nerves in patients with dry eye. Investig Ophthalmol Vis Sci 45(9):3030–3035CrossRefGoogle Scholar
  23. 23.
    Postole AS, Knoll AB, Auffarth GU et al (2016) In vivo confocal microscopy of inflammatory cells in the corneal subbasal nerve plexus in patients with different subtypes of anterior uveitis. Br J Ophthalmol 100(11):1551–1556CrossRefPubMedGoogle Scholar
  24. 24.
    Bouheraoua N, Hrarat L, Parsa CF et al (2015) Decreased corneal sensation and subbasal nerve density, and thinned corneal epithelium as a result of 360-degree laser retinopexy. Ophthalmology 122(10):2095–2102CrossRefPubMedGoogle Scholar
  25. 25.
    Carpineto P, Agnifili L, Nubile M et al (2011) Conjunctival and corneal findings in bleb-associated endophthalmitis: an in vivo confocal microscopy study. Acta Ophthalmol 89(4):388–395CrossRefPubMedGoogle Scholar
  26. 26.
    Nebbioso M, Belcaro G, Komaiha C et al (2012) Keratoconjunctivitis by confocal microscopy after topical cyclosporine. Panminerva Med 56:9–13Google Scholar
  27. 27.
    Leonardi A, Lazzarini D, Bortolotti M et al (2012) Corneal confocal microscopy in patients with vernal keratoconjunctivitis. Ophthalmology 119(3):509–515CrossRefPubMedGoogle Scholar
  28. 28.
    Le QH, Hong JX, Zhu WQ et al (2011) Morphological characteristics of cornea in patients with vernal keratoconjunctivitis by in vivo laser scanning confocal microscopy. Zhonghua Yan Ke Za Zhi 47(5):416–422 (Chinese) PubMedGoogle Scholar
  29. 29.
    Ramírez M, Hernández-Quintela E, Naranjo-Tackman R (2013) Early confocal microscopy findings after cross-linking treatment. Arch Soc Esp Oftalmol 88(5):179–183CrossRefPubMedGoogle Scholar
  30. 30.
    Hovakimyan M, Guthoff R, Reichard M et al (2011) In vivo confocal laser-scanning microscopy to characterize wound repair in rabbit corneas after collagen cross-linking. Clin Exp Ophthalmol 39(9):899–909CrossRefPubMedGoogle Scholar
  31. 31.
    Ramírez M, Hernández-Quintela E, Naranjo-Tackman R (2012) Epi-LASIK: a confocal microscopy analysis of the corneal epithelium and anterior stroma. Ophthalmic Surg Lasers Imaging 43(4):319–322CrossRefPubMedGoogle Scholar
  32. 32.
    Vesaluoma M, Pérez-Santonja J, Petroll WM et al (2000) Corneal stromal changes induced by myopic LASIK. Investig Ophthalmol Vis Sci 41(2):369–376Google Scholar
  33. 33.
    Iaccheri B, Fiore T, Cerquaglia A et al (2016) Transient therapeutic effect of vitrectomy in primary intraocular lymphoma. Int Ophthalmol.  https://doi.org/10.1007/s10792-016-0405-2 Google Scholar
  34. 34.
    Mahendradas P, Shetty R, Narayana KM et al (2010) In vivo confocal microscopy of keratic precipitates in infectious versus noninfectious uveitis. Ophthalmology 117(2):373–380CrossRefPubMedGoogle Scholar
  35. 35.
    Kanavi MR, Soheilian MJ (2011) Confocal scan features of keratic precipitates in granulomatous versus non-granulomatous uveitis. J Ophthalmic Vis Res 6(4):255–258PubMedPubMedCentralGoogle Scholar
  36. 36.
    Kanavi MR, Soheilian M, Naghshgar N (2010) Confocal scan of keratic precipitates in uveitic eyes of various etiologies. Cornea 29(6):650–654CrossRefPubMedGoogle Scholar
  37. 37.
    Szaflik JP, Kmera-Muszyńska M (2007) Confocal microscopy imaging of the cornea in patients with silicone oil in the anterior chamber after vitreoretinal surgery. Graefes Arch Clin Exp Ophthalmol 245(2):210–214CrossRefPubMedGoogle Scholar
  38. 38.
    Yamaguchi T, Hamrah P, Shimazaki J (2016) Bilateral alterations in corneal nerves, dendritic cells, and tear cytokine levels in ocular surface disease. Cornea 35(Suppl 1):S65–S70CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Hattori T, Takahashi H, Dana R (2016) Novel insights into the immunoregulatory function and localization of dendritic cells. Cornea 35(Suppl 1):S49–S54CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Shorstein NH, Winthrop KL, Herrinton LJ (2013) Decreased postoperative endophthalmitis rate after institution of intracameral antibiotics in a Northern California eye department. J Cataract Refract Surg 39(1):8–14CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Biomedical and Surgical Sciences, Section of OphthalmologyUniversity of Perugia, S. Maria della Misericordia HospitalPerugiaItaly
  2. 2.Centre de l’OdéonParisFrance
  3. 3.The Macula Onlus FoundationGenoaItaly
  4. 4.Ophthalmology Unit, Department of Translational Surgery and MedicineUniversity of FirenzeFlorenceItaly

Personalised recommendations