Abstract
Purpose
To analyze changes in corneal densitometry 3 months after accelerated corneal collagen cross-linking (CXL) measured with Scheimpflug tomography.
Methods
In this study we reviewed charts and anterior segment data of patients who had undergone accelerated pulsed epithelium-off CXL (30 mW/cm2 for 4 min, 8 min total radiation time) for treatment of progressive keratoconus in the Department of Ophthalmology, Goethe University, Frankfurt, Germany. Visual, topographic, pachymetric and densitometric data were extracted before surgery and at the 3-month follow-up. Corneal densitometry measurements from different corneal layers and zones obtained using Scheimpflug tomography (Pentacam HR, Oculus).
Results
The study investigated 12 eyes of 12 patients. The anterior (120 μm) stromal layer within the 0.0 to 2.0 mm and 2.0 to 6.0 mm concentric zones showed a significant elevation of mean densitometry 3 months post-surgery (P = 0.045; P = 0.015) compared to baseline. A mean stromal demarcation line was apparent at a depth of 203.00 μm ± 13.53 (SD). After accelerated CXL, no change in mean corrected distance visual acuity (LogMAR) was observed but a thinning of the cornea measured by a significant reduction in central pachymetry (μm).
Conclusion
Accelerated CXL results in an increase in corneal densitometry, particularly in the anterior stromal layer within the two central concentric zones (0.0 to 2.0 mm and 2.0 to 6.0 mm) of the cornea at 3 months postoperatively. The changes in corneal densitometry of the anterior stromal layer did not correlate with postoperative visual acuity or central pachymetry.
This is a preview of subscription content, access via your institution.

Scheimpflug densitometry measured in gray-scale-units (GSU) at different concentric zones (0.0 to 2.0; 2.0 to 6.0; 6.0 to 10.0; 10.0 to 12.0 mm) and stromal depths of the cornea (anterior stromal layer (120 μm), posterior stromal layer (60 μm), middle stromal layer between these two layers). The standardized Scheimpflug densitometry is expressed in gray-scale-units (GSUs), which defines backward light scatter on a scale of 0 (minimum scatter; maximum transparency) to 100 (maximum scatter; minimum transparency)


Abbreviations
- BSS:
-
Balanced salt solution
- CDVA:
-
Corrected distance visual acuity
- CXL:
-
Corneal collagen cross-linking
- D:
-
Diopter
- GSU:
-
Grayscale unit
- LogMAR:
-
Logarithm of the minimum angle of resolution
- OCT:
-
Optical coherence tomography
- UDVA:
-
Uncorrected distance visual acuity
- UV-A:
-
Ultraviolet-A
References
Sykakis E, Karim R, Evans JR, Bunce C, Amissah-Arthur KN, Patwary S, McDonnell PJ, Hamada S (2015) Corneal collagen cross-linking for treating keratoconus. The Cochrane database of systematic reviews (3):Cd010621. https://doi.org/10.1002/14651858.cd010621.pub2
Raiskup F, Lenk J, Herber R, Gatzioufas Z, Sporl E (2017) Therapeutic options in keratoconus. Klin Monbl Augenheilkd. https://doi.org/10.1055/s-0043-111797
Raiskup F, Velika V, Vesela M, Sporl E (2015) Cross-linking in keratoconus: “Epi-off” or “Epi-on”? Klin Monbl Augenheilkd 232(12):1392–1396. https://doi.org/10.1055/s-0035-1546155
Wollensak G, Spoerl E, Seiler T (2003) Riboflavin/ultraviolet-a-induced collagen crosslinking for the treatment of keratoconus. Am J Ophthalmol 135(5):620–627
Wernli J, Schumacher S, Spoerl E, Mrochen M (2013) The efficacy of corneal cross-linking shows a sudden decrease with very high intensity UV light and short treatment time. Invest Ophthalmol Vis Sci 54(2):1176–1180. https://doi.org/10.1167/iovs.12-11409
Zygoura V, Alio del Barrio J, Gatzioufas Z, Saw V, Raiskup F (2015) Evaluation of corneal stromal demarcation line depth following standard and a modified-accelerated collagen cross-linking protocol. Am J Ophthalmol 159(1):211–212. https://doi.org/10.1016/j.ajo.2014.10.018
Kymionis GD, Tsoulnaras KI, Grentzelos MA, Liakopoulos DA, Tsakalis NG, Blazaki SV, Paraskevopoulos TA, Tsilimbaris MK (2014) Evaluation of corneal stromal demarcation line depth following standard and a modified-accelerated collagen cross-linking protocol. Am J Ophthalmol 158(4):671
Webb JN, Su JP, Scarcelli G (2017) Mechanical outcome of accelerated corneal crosslinking evaluated by Brillouin microscopy. J Cataract Refract Surg 43(11):1458–1463. https://doi.org/10.1016/j.jcrs.2017.07.037
Males JJ, Viswanathan D (2018) Comparative study of long-term outcomes of accelerated and conventional collagen crosslinking for progressive keratoconus. Eye 32(1):32–38. https://doi.org/10.1038/eye.2017.296
Woo JH, Iyer JV, Lim L, Hla MH, Mehta JS, Chan CM, Tan DT (2017) Conventional versus accelerated collagen cross-linking for keratoconus: a comparison of visual, refractive, topographic and biomechanical outcomes. Open Ophthalmol J 11:262–272. https://doi.org/10.2174/1874364101711010262
Raiskup F, Theuring A, Pillunat LE, Spoerl E (2015) Corneal collagen crosslinking with riboflavin and ultraviolet-A light in progressive keratoconus: 10-year results. J Cataract Refract Surg 41(1):41–46. https://doi.org/10.1016/j.jcrs.2014.09.033
Kohlhaas M, Spoerl E, Schilde T, Unger G, Wittig C, Pillunat LE (2006) Biomechanical evidence of the distribution of cross-links in corneas treated with riboflavin and ultraviolet A light. J Cataract Refract Surg 32(2):279–283. https://doi.org/10.1016/j.jcrs.2005.12.092
Baumeister M, Klaproth OK, Gehmlich J, Buhren J, Kohnen T (2009) Changes in corneal first-surface wavefront aberration after corneal collagen cross-linking in keratoconus. Klin Monbl Augenheilkd 226(9):752–756. https://doi.org/10.1055/s-0028-1109627
Koller T, Pajic B, Vinciguerra P, Seiler T (2011) Flattening of the cornea after collagen crosslinking for keratoconus. J Cataract Refract Surg 37(8):1488–1492. https://doi.org/10.1016/j.jcrs.2011.03.041
Asri D, Touboul D, Fournie P, Malet F, Garra C, Gallois A, Malecaze F, Colin J (2011) Corneal collagen crosslinking in progressive keratoconus: multicenter results from the French national reference center for keratoconus. J Cataract Refract Surg 37(12):2137–2143. https://doi.org/10.1016/j.jcrs.2011.08.026
Seiler TG, Schmidinger G, Fischinger I, Koller T, Seiler T (2013) Complications of corneal cross-linking. Ophthalmologe 110(7):639–644. https://doi.org/10.1007/s00347-012-2682-0
Mazzotta C, Balestrazzi A, Baiocchi S, Traversi C, Caporossi A (2007) Stromal haze after combined riboflavin-UVA corneal collagen cross-linking in keratoconus: in vivo confocal microscopic evaluation. Clinical Exp Ophthalmol 35(6):580–582. https://doi.org/10.1111/j.1442-9071.2007.01536.x
Raiskup F, Hoyer A, Spoerl E (2009) Permanent corneal haze after riboflavin-UVA-induced cross-linking in keratoconus. J Refract Surg 25(9):S824–S828. https://doi.org/10.3928/1081597x-20090813-12
Greenstein SA, Fry KL, Bhatt J, Hersh PS (2010) Natural history of corneal haze after collagen crosslinking for keratoconus and corneal ectasia: scheimpflug and biomicroscopic analysis. J Cataract Refract Surg 36(12):2105–2114. https://doi.org/10.1016/j.jcrs.2010.06.067
Lopes B, Ramos I, Ambrosio R Jr (2014) Corneal densitometry in keratoconus. Cornea 33(12):1282–1286. https://doi.org/10.1097/ico.0000000000000266
Pircher N, Pachala M, Prager F, Pieh S, Schmidinger G (2015) Changes in straylight and densitometry values after corneal collagen crosslinking. J Cataract Refract Surg 41(5):1038–1043. https://doi.org/10.1016/j.jcrs.2014.07.043
Kohnen T, Neuhann T, Knorz MC (2014) Evaluation and quality assurance of refractive surgical interventions by the German Ophthalmology Society and the German Professional Association of Ophthalmologists (status 2014). Klin Monbl Augenheilkd 231(6):642–650. https://doi.org/10.1055/s-0034-1368481
Accelerated cross-linking with Pulsed illumination (2013). Clinical Update & Research News Volume 3(1): 1–4
Wollensak G, Wilsch M, Spoerl E, Seiler T (2004) Collagen fiber diameter in the rabbit cornea after collagen crosslinking by riboflavin/UVA. Cornea 23(5):503–507
Wollensak G, Spoerl E, Wilsch M, Seiler T (2004) Keratocyte apoptosis after corneal collagen cross-linking using riboflavin/UVA treatment. Cornea 23(1):43–49
Wilson SE, Kim WJ (1998) Keratocyte apoptosis: implications on corneal wound healing, tissue organization, and disease. Invest Ophthalmol Vis Sci 39(2):220–226
Vinciguerra P, Albe E, Trazza S, Rosetta P, Vinciguerra R, Seiler T, Epstein D (2009) Refractive, topographic, tomographic, and aberrometric analysis of keratoconic eyes undergoing corneal cross-linking. Ophthalmology 116(3):369–378. https://doi.org/10.1016/j.ophtha.2008.09.048
Netto MV, Mohan RR, Ambrosio R Jr, Hutcheon AE, Zieske JD, Wilson SE (2005) Wound healing in the cornea: a review of refractive surgery complications and new prospects for therapy. Cornea 24(5):509–522
Kim BZ, Jordan CA, McGhee CNJ, Patel DV (2016) Natural history of corneal haze after corneal collagen crosslinking in keratoconus using Scheimpflug analysis. J Cataract Refract Surg 42(7):1053–1059. https://doi.org/10.1016/j.jcrs.2016.04.019
Steven P, Hovakimyan M, Guthoff RF, Huttmann G, Stachs O (2010) Imaging corneal crosslinking by autofluorescence 2-photon microscopy, second harmonic generation, and fluorescence lifetime measurements. J Cataract Refract Surg 36(12):2150–2159. https://doi.org/10.1016/j.jcrs.2010.06.068
Kamaev P, Friedman MD, Sherr E, Muller D (2012) Photochemical kinetics of corneal cross-linking with riboflavin. Invest Ophthalmol Vis Sci 53(4):2360–2367. https://doi.org/10.1167/iovs.11-9385
Marshall J HP, Muller D (2013) Corneal collagen cross-linking; past, present, future [ebook]
Koller T, Schumacher S, Fankhauser F 2nd, Seiler T (2013) Riboflavin/ultraviolet a crosslinking of the paracentral cornea. Cornea 32(2):165–168. https://doi.org/10.1097/ICO.0b013e318269059b
Moramarco A, Iovieno A, Sartori A, Fontana L (2015) Corneal stromal demarcation line after accelerated crosslinking using continuous and pulsed light. J Cataract Refract Surg 41(11):2546–2551. https://doi.org/10.1016/j.jcrs.2015.04.033
Moineau N, Sauvan L, Benichou J, Ho Wang Yin G, Hoffart L (2017) High-irradiance accelerated corneal collagen crosslinking for the treatment of keratoconus: a retrospective study. J Fr Ophtalmol 40(4):319–328. https://doi.org/10.1016/j.jfo.2016.11.014
Toker E, Cerman E, Ozcan DO, Seferoglu OB (2017) Efficacy of different accelerated corneal crosslinking protocols for progressive keratoconus. J Cataract Refract Surg 43(8):1089–1099. https://doi.org/10.1016/j.jcrs.2017.05.036
Mita M, Waring GOt, Tomita M (2014) High-irradiance accelerated collagen crosslinking for the treatment of keratoconus: six-month results. J Cataract Refract Surg 40(6):1032–1040. https://doi.org/10.1016/j.jcrs.2013.12.014
Greenstein SA, Shah VP, Fry KL, Hersh PS (2011) Corneal thickness changes after corneal collagen crosslinking for keratoconus and corneal ectasia: 1-year results. J Cataract Refract Surg 37(4):691–700. https://doi.org/10.1016/j.jcrs.2010.10.052
Koller T, Iseli HP, Hafezi F, Vinciguerra P, Seiler T (2009) Scheimpflug imaging of corneas after collagen cross-linking. Cornea 28(5):510–515. https://doi.org/10.1097/ICO.0b013e3181915943
Grewal DS, Brar GS, Jain R, Sood V, Singla M, Grewal SP (2009) Corneal collagen crosslinking using riboflavin and ultraviolet-A light for keratoconus: 1-year analysis using Scheimpflug imaging. J Cataract Refract Surg 35(3):425–432. https://doi.org/10.1016/j.jcrs.2008.11.046
Vinciguerra P, Albe E, Romano MR, Sabato L, Trazza S (2012) Stromal opacity after cross-linking. J Refract Surg 28(3):165. https://doi.org/10.3928/1081597x-20120301-04
Seiler T, Hafezi F (2006) Corneal cross-linking-induced stromal demarcation line. Cornea 25(9):1057–1059. https://doi.org/10.1097/01.ico.0000225720.38748.58
Bottos KM, Dreyfuss JL, Regatieri CV, Lima-Filho AA, Schor P, Nader HB, Chamon W (2008) Immunofluorescence confocal microscopy of porcine corneas following collagen cross-linking treatment with riboflavin and ultraviolet A. J Refract Surg 24(7):S715–719
Wollensak G, Aurich H, Pham DT, Wirbelauer C (2007) Hydration behavior of porcine cornea crosslinked with riboflavin and ultraviolet A. J Cataract Refract Surg 33(3):516–521. https://doi.org/10.1016/j.jcrs.2006.11.015
Dohlman CH, Hedbys BO, Mishima S (1962) The swelling pressure of the corneal stroma. Investig Ophthalmol 1:158–162
Wollensak G, Iomdina E, Dittert DD, Herbst H (2007) Wound healing in the rabbit cornea after corneal collagen cross-linking with riboflavin and UVA. Cornea 26(5):600–605. https://doi.org/10.1097/ICO.0b013e318041f073
Mazzotta C, Traversi C, Baiocchi S, Caporossi O, Bovone C, Sparano MC, Balestrazzi A, Caporossi A (2008) Corneal healing after riboflavin ultraviolet-A collagen cross-linking determined by confocal laser scanning microscopy in vivo: early and late modifications. Am J Ophthalmol 146(4):527–533. https://doi.org/10.1016/j.ajo.2008.05.042
Mazzotta C, Baiocchi S, Caporossi O, Buccoliero D, Casprini F, Caporossi A, Balestrazzi A (2008) Confocal microscopy identification of keratoconus associated with posterior polymorphous corneal dystrophy. J Cataract Refract Surg 34(2):318–321. https://doi.org/10.1016/j.jcrs.2007.09.028
Michelacci YM (2003) Collagens and proteoglycans of the corneal extracellular matrix. Braz J Med Biol Res 36(8):1037–1046
Koc M, Uzel MM, Tekin K, Kosekahya P, Ozulken K, Yilmazbas P (2016) Effect of preoperative factors on visual acuity, corneal flattening, and corneal haze after accelerated corneal crosslinking. J Cataract Refract Surg 42(10):1483–1489. https://doi.org/10.1016/j.jcrs.2016.08.017
Wollensak G, Hammer T, Herrmann CI (2008) Haze or calcific band keratopathy after crosslinking treatment? Ophthalmologe 105(9):864–865. https://doi.org/10.1007/s00347-008-1831-y
Corbett MC, Prydal JI, Verma S, Oliver KM, Pande M, Marshall J (1996) An in vivo investigation of the structures responsible for corneal haze after photorefractive keratectomy and their effect on visual function. Ophthalmology 103(9):1366–1380
Shetty R, Agrawal A, Deshmukh R, Kaweri L, Rao HL, Nagaraja H, Jayadev C (2017) Effect of post crosslinking haze on the repeatability of Scheimpflug-based and slit-scanning imaging devices. Indian J Ophthalmol 65(4):305–310. https://doi.org/10.4103/ijo.IJO_690_16
Funding
Myriam Böhm: none; Mehdi Shajari: Oculus; Matthias Remy: Avedro Inc.: Travel has been funded; Thomas Kohnen receives grant support from Hoya, J&J Vision (Abbott), Novartis (Alcon), Oculentis, Oculus, Schwind, and Zeiss; and is a consultant to Geuder, J&J Vision (Abbott), Novartis (Alcon), Oculus, Santen, Schwind, STAAR, TearLab, Thea Pharma, Thieme Compliance, Ziemer, and Zeiss.
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Conflict of interest
Myriam Böhm and Mehdi Shajari declare that they have no conflict of interest. Matthias Remy has received a travel honorarium from Avedro (Waltham, MA 02451, USA).
Human and animal rights
This article does not contain any studies with animals performed by any of the authors. All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Declaration of Helsinki and its later amendments or comparable ethical standards.
Informed consent
No informed consent was obtained from patients since this was a retrospective study and data were anonymized. This is in accordance with the ethical vote obtained from the local ethics committee.
Additional information
Thomas Kohnen has received research grants from Hoya Surgical Optics GmbH (Frankfurt, Germany); J&J Vision (Abbott Medical Optics, Inc. [Santa Ana, CA, USA]); Novartis (Alcon Laboratories, Inc. [Fort Worth, TX, USA]); Oculentis GmbH (Berlin, Germany); Oculus Optikgerate GmbH (Wetzlar, Germany); Schwind Eye-Tech Solutions GmbH (Kleinostheim, Germany); and Carl Zeiss Meditec AG (Jena, Germany); and is a consultant to Geuder AG (Heidelberg, Germany); J&J Vision (Abbott Medical Optics, Inc. [Santa Ana, CA, USA]); Novartis (Alcon Laboratories, Inc. [Fort Worth, TX, USA]); Oculus Optikgeräte GmbH (Wetzlar, Germany); Santen GmbH, (Munich, Germany); Schwind Eye-Tech Solutions GmbH (Kleinostheim, Germany); STAAR Surgical AG (Nidau, Switzerland); TearLab Corp (San Diego, CA, USA); Thea Pharma GmbH (Berlin, Germany); Thieme Compliance GmbH (Erlangen, Germany); Ziemer Ophthalmology GmbH (Emmendingen, Germany); and Carl Zeiss Meditec AG (Jena, Germany).
Rights and permissions
About this article
Cite this article
Böhm, M., Shajari, M., Remy, M. et al. Corneal densitometry after accelerated corneal collagen cross-linking in progressive keratoconus. Int Ophthalmol 39, 765–775 (2019). https://doi.org/10.1007/s10792-018-0876-4
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10792-018-0876-4
Keywords
- Corneal collagen cross-linking
- Densitometry
- Scheimpflug tomography
- Keratoconus