Skip to main content

Advertisement

Log in

Activation of Nrf2/HO-1 pathway protects retinal ganglion cells from a rat chronic ocular hypertension model of glaucoma

  • Original Paper
  • Published:
International Ophthalmology Aims and scope Submit manuscript

Abstract

Objective

The objective of this work was to find out the effects of nuclear factor erythroid 2-related factor/heme oxygenase-1 (Nrf2/HO-1) pathway on retinal ganglion cell (RGC) injury in glaucoma.

Methods

The chronic ocular hypertension (COH) rat models of glaucoma were constructed, and intraocular pressure (IOP) and RGC numbers were detected at different time points. Additionally, rats were divided into normal group (normal control rats), model group (COH model rats), and model + tBHQ group (COH model rats treated with Nrf activator, tBHQ). RGC apoptosis was detected by using TUNEL staining, and the expressions of Nrf2/HO-1 were detected by qRT-PCR and western blotting.

Results

COH model rats showed significant IOP elevation and the increased mRNA and protein expressions of Nrf2 and HO-1 from 1 to 6 weeks after operation, with the evidently decreased RGC numbers at 4 weeks and 6 weeks after operation (all P < 0.05). Besides, rats in the model group had increased apoptosis index (AI) of RGCs and the elevated mRNA and protein expressions of Nrf2/HO-1 with remarkably reduced RGC numbers when compared with normal control rats, but the model rats treated with tBHQ exhibited an apparent decrease in AI of RGCs, as well as remarkable increases in RGC numbers and the mRNA and protein expression of Nrf2/HO-1 (all P < 0.05).

Conclusion

Activation of Nrf2/HO-1 pathway significantly reduced the apoptosis and injury of RGCs in rats with chronic ocular hypertension (COH), thereby protecting RGCs in glaucoma, which could be a promising clinical target to prevent RGC degeneration in glaucoma.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Pang Y, Wang C, Yu L (2015) Mitochondria-targeted antioxidant ss-31 is a potential novel ophthalmic medication for neuroprotection in glaucoma. Med Hypothesis Discov Innov Ophthalmol 4:120–126

    PubMed  PubMed Central  Google Scholar 

  2. Sun XB, Lu HE, Chen Y, Fan XH, Tong B (2014) Effect of lithium chloride on endoplasmic reticulum stress-related perk/rock signaling in a rat model of glaucoma. Pharmazie 69:889–893

    CAS  PubMed  Google Scholar 

  3. Mossböck G, Weger M, Faschinger C, Schmut O, Renner W (2004) Primary open-angle glaucoma. N Engl J Med 363(9422):1711

    Google Scholar 

  4. Nickells RW (2007) From ocular hypertension to ganglion cell death: a theoretical sequence of events leading to glaucoma. Can J Ophthalmol 42:278–287

    Article  Google Scholar 

  5. Park HY, Kim JH, Park CK (2012) Activation of autophagy induces retinal ganglion cell death in a chronic hypertensive glaucoma model. Cell Death Dis 3:e290

    Article  Google Scholar 

  6. Orzalesi N, Rossetti L, Omboni S, Group OS (2007) Conproso: vascular risk factors in glaucoma: the results of a national survey. Graefes Arch Clin Exp Ophthalmol 245:795–802

    Article  Google Scholar 

  7. Guo Y, Johnson E, Cepurna W, Jia L, Dyck J, Morrison JC (2009) Does elevated intraocular pressure reduce retinal TRKB-mediated survival signaling in experimental glaucoma? Exp Eye Res 89:921–933

    Article  CAS  Google Scholar 

  8. McKinnon SJ, Goldberg LD, Peeples P, Walt JG, Bramley TJ (2008) Current management of glaucoma and the need for complete therapy. Am J Manag Care 14:S20–S27

    PubMed  Google Scholar 

  9. Qu J, Wang D, Grosskreutz CL (2010) Mechanisms of retinal ganglion cell injury and defense in glaucoma. Exp Eye Res 91:48–53

    Article  CAS  Google Scholar 

  10. Tezel G (2011) The immune response in glaucoma: a perspective on the roles of oxidative stress. Exp Eye Res 93:178–186

    Article  CAS  Google Scholar 

  11. Sasaki H, Shitara M, Yokota K, Hikosaka Y, Moriyama S, Yano M, Fujii Y (2012) Increased NRF2 gene (NFE2L2) copy number correlates with mutations in lung squamous cell carcinomas. Mol Med Rep 6:391–394

    Article  CAS  Google Scholar 

  12. Zhang DD (2006) Mechanistic studies of the Nrf2-Keap1 signaling pathway. Drug Metab Rev 38:769–789

    Article  CAS  Google Scholar 

  13. Li W, Khor TO, Xu C, Shen G, Jeong WS, Yu S, Kong AN (2008) Activation of Nrf2-antioxidant signaling attenuates NFκB-inflammatory response and elicits apoptosis. Biochem Pharmacol 76:1485–1489

    Article  CAS  Google Scholar 

  14. Shen X, Hu B, Xu G, Chen F, Ma R, Zhang N, Liu J, Ma X, Zhu J, Wu Y, Shen R (2017) Activation of Nrf2/HO-1 pathway by glycogen synthase kinase-3β inhibition attenuates renal ischemia/reperfusion injury in diabetic rats. Kidney Blood Press Res 42:369–378

    Article  CAS  Google Scholar 

  15. Dunn LL, Midwinter RG, Ni J, Hamid HA, Parish CR, Stocker R (2014) New insights into intracellular locations and functions of heme oxygenase-1. Antioxid Redox Signal 20:1723–1742

    Article  CAS  Google Scholar 

  16. Zhang H, Liu YY, Jiang Q, Li KR, Zhao YX, Cao C, Yao J (2014) Salvianolic acid a protects rpe cells against oxidative stress through activation of Nrf2/HO-1 signaling. Free Radic Biol Med 69:219–228

    Article  CAS  Google Scholar 

  17. Guzman-Beltran S, Espada S, Orozco-Ibarra M, Pedraza-Chaverri J, Cuadrado A (2008) Nordihydroguaiaretic acid activates the antioxidant pathway Nrf2/HO-1 and protects cerebellar granule neurons against oxidative stress. Neurosci Lett 447:167–171

    Article  CAS  Google Scholar 

  18. Xu Z, Cho H, Hartsock MJ, Mitchell KL, Gong J, Wu L, Wei Y, Wang S, Thimmulappa RK, Sporn MB, Biswal S, Welsbie DS, Duh EJ (2015) Neuroprotective role of Nrf2 for retinal ganglion cells in ischemia–reperfusion. J Neurochem 133:233–241

    Article  CAS  Google Scholar 

  19. Pan H, He M, Liu R, Brecha NC, Yu AC, Pu M (2014) Sulforaphane protects rodent retinas against ischemia–reperfusion injury through the activation of the Nrf2/HO-1 antioxidant pathway. PLoS ONE 9:e114186

    Article  Google Scholar 

  20. Bayne K (1996) Revised guide for the care and use of laboratory animals available. Am Phys Soc Physiol 39(199):111–208

    Google Scholar 

  21. Ji M, Miao Y, Dong LD, Chen J, Mo XF, Jiang SX, Sun XH, Yang XL, Wang Z (2012) Group I mGluR-mediated inhibition of Kir channels contributes to retinal muller cell gliosis in a rat chronic ocular hypertension model. J Neurosci 32:12744–12755

    Article  CAS  Google Scholar 

  22. Yu S, Tanabe T, Yoshimura N (2006) A rat model of glaucoma induced by episcleral vein ligation. Exp Eye Res 83:758–770

    Article  CAS  Google Scholar 

  23. Su W, Li Z, Jia Y, Zhuo Y (2014) Rapamycin is neuroprotective in a rat chronic hypertensive glaucoma model. PLoS ONE 9:e99719

    Article  Google Scholar 

  24. Hong S, Kim CY, Lee WS, Shim J, Yeom HY, Seong GJ (2010) Ocular hypotensive effects of topically administered agmatine in a chronic ocular hypertensive rat model. Exp Eye Res 90:97–103

    Article  CAS  Google Scholar 

  25. Izzotti A, Bagnis A, Sacca SC (2006) The role of oxidative stress in glaucoma. Mutat Res 612:105–114

    Article  CAS  Google Scholar 

  26. Sagai M, Bocci V (2011) Mechanisms of action involved in ozone therapy: Is healing induced via a mild oxidative stress? Med Gas Res 1:29

    Article  CAS  Google Scholar 

  27. Keum YS, Yu S, Chang PP, Yuan X, Kim JH, Xu C, Han J, Agarwal A, Kong AN (2006) Mechanism of action of sulforaphane: inhibition of p38 mitogen-activated protein kinase isoforms contributing to the induction of antioxidant response element-mediated heme oxygenase-1 in human hepatoma HepG2 cells. Cancer Res 66:8804–8813

    Article  CAS  Google Scholar 

  28. Kang KW, Lee SJ, Park JW, Kim SG (2002) Phosphatidylinositol 3-kinase regulates nuclear translocation of NF-E2-related factor 2 through actin rearrangement in response to oxidative stress. Mol Pharmacol 62:1001–1010

    Article  CAS  Google Scholar 

  29. Cullinan SB, Zhang D, Hannink M, Arvisais E, Kaufman RJ, Diehl JA (2003) Nrf2 is a direct perk substrate and effector of perk-dependent cell survival. Mol Cell Biol 23:7198–7209

    Article  CAS  Google Scholar 

  30. McCubrey JA, Lahair MM, Franklin RA (2006) Reactive oxygen species-induced activation of the map kinase signaling pathways. Antioxid Redox Signal 8:1775–1789

    Article  CAS  Google Scholar 

  31. Xu Z, Wei Y, Gong J, Cho H, Park JK, Sung ER, Huang H, Wu L, Eberhart C, Handa JT, Du Y, Kern TS, Thimmulappa R, Barber AJ, Biswal S, Duh EJ (2014) Nrf2 plays a protective role in diabetic retinopathy in mice. Diabetologia 57:204–213

    Article  CAS  Google Scholar 

  32. Wei Y, Gong J, Xu Z, Thimmulappa RK, Mitchell KL, Welsbie DS, Biswal S, Duh EJ (2015) Nrf2 in ischemic neurons promotes retinal vascular regeneration through regulation of semaphorin 6A. Proc Natl Acad Sci U S A 112:E6927–E6936

    Article  CAS  Google Scholar 

  33. He M, Pan H, Chang RC, So KF, Brecha NC, Pu M (2014) Activation of the Nrf2/HO-1 antioxidant pathway contributes to the protective effects of Lycium barbarum polysaccharides in the rodent retina after ischemia–reperfusion-induced damage. PLoS ONE 9:e84800

    Article  Google Scholar 

  34. Himori N, Yamamoto K, Maruyama K, Ryu M, Taguchi K, Yamamoto M, Nakazawa T (2013) Critical role of Nrf2 in oxidative stress-induced retinal ganglion cell death. J Neurochem 127:669–680

    Article  CAS  Google Scholar 

  35. Koriyama Y, Chiba K, Yamazaki M, Suzuki H, Muramoto K, Kato S (2010) Long-acting genipin derivative protects retinal ganglion cells from oxidative stress models in vitro and in vivo through the Nrf2/antioxidant response element signaling pathway. J Neurochem 115:79–91

    Article  CAS  Google Scholar 

  36. Majsterek I, Malinowska K, Stanczyk M, Kowalski M, Blaszczyk J, Kurowska AK, Kaminska A, Szaflik J, Szaflik JP (2011) Evaluation of oxidative stress markers in pathogenesis of primary open-angle glaucoma. Exp Mol Pathol 90:231–237

    Article  CAS  Google Scholar 

  37. Pinazo-Duran MD, Zanon-Moreno V, Garcia-Medina JJ, Gallego-Pinazo R (2013) Evaluation of presumptive biomarkers of oxidative stress, immune response and apoptosis in primary open-angle glaucoma. Curr Opin Pharmacol 13:98–107

    Article  CAS  Google Scholar 

  38. Gallego-Pinazo R, Zanon-Moreno V, Sanz S, Andres V, Serrano M, Garcia-Cao I, Pinazo-Duran MD (2008) Biochemical characterization of the optic nerve in mice overexpressing the P53 gen. Oxidative stress assays. Arch Soc Esp Oftalmol 83:105–111

    Article  CAS  Google Scholar 

  39. Duan P, Hu C, Butler HJ, Quan C, Chen W, Huang W, Tang S, Zhou W, Yuan M, Shi Y, Martin FL, Yang K (2017) 4-Nonylphenol induces disruption of spermatogenesis associated with oxidative stress-related apoptosis by targeting p53-Bcl-2/Bax-Fas/Fasl signaling. Environ Toxicol 32:739–753

    Article  CAS  Google Scholar 

  40. Abu-Amero KK, Morales J, Bosley TM (2006) Mitochondrial abnormalities in patients with primary open-angle glaucoma. Invest Ophthalmol Vis Sci 47:2533–2541

    Article  Google Scholar 

  41. Huang W, Fileta JB, Dobberfuhl A, Filippopolous T, Guo Y, Kwon G, Grosskreutz CL (2005) Calcineurin cleavage is triggered by elevated intraocular pressure, and calcineurin inhibition blocks retinal ganglion cell death in experimental glaucoma. Proc Natl Acad Sci U S A 102:12242–12247

    Article  CAS  Google Scholar 

  42. Barakat DJ, Dvoriantchikova G, Ivanov D, Shestopalov VI (2012) Astroglial NF-κB mediates oxidative stress by regulation of nadph oxidase in a model of retinal ischemia reperfusion injury. J Neurochem 120:586–597

    Article  CAS  Google Scholar 

  43. Tezel G, Yang X, Luo C, Cai J, Powell DW (2012) An astrocyte-specific proteomic approach to inflammatory responses in experimental rat glaucoma. Invest Ophthalmol Vis Sci 53:4220–4233

    Article  CAS  Google Scholar 

  44. Wan P, Su W, Zhang Y, Li Z, Deng C, Zhuo Y (2017) Trimetazidine protects retinal ganglion cells from acute glaucoma via the Nrf2/HO-1 pathway. Clin Sci (Lond) 131:2363–2375

    Article  CAS  Google Scholar 

  45. Fan J, Xu G, Jiang T, Qin Y (2012) Pharmacologic induction of heme oxygenase-1 plays a protective role in diabetic retinopathy in rats. Invest Ophthalmol Vis Sci 53:6541–6556

    Article  CAS  Google Scholar 

  46. Sun MH, Pang JH, Chen SL, Han WH, Ho TC, Chen KJ, Kao LY, Lin KK, Tsao YP (2010) Retinal protection from acute glaucoma-induced ischemia–reperfusion injury through pharmacologic induction of heme oxygenase-1. Invest Ophthalmol Vis Sci 51:4798–4808

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhi-lan Yuan.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, X., Yuan, Zl. Activation of Nrf2/HO-1 pathway protects retinal ganglion cells from a rat chronic ocular hypertension model of glaucoma. Int Ophthalmol 39, 2303–2312 (2019). https://doi.org/10.1007/s10792-018-01071-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10792-018-01071-8

Keywords

Navigation