Skip to main content

Advertisement

Log in

Retinal vascular density evaluated by optical coherence tomography angiography in macular telangiectasia type 2

  • Original Paper
  • Published:
International Ophthalmology Aims and scope Submit manuscript

Abstract

Purpose

To evaluate the retinal and choroidal vascular changes through optical coherence tomography angiography (OCTA) in patients with macular telangiectasia type 2 (MacTel 2).

Methods

Our study included 20 patients (40 eyes) with MacTel 2, and age-matched and sex-matched 18 subjects (36 eyes) in the control group. Fundus color photographs, fundus autofluorescence, fundus fluorescein angiography, spectral-domain optical coherence tomography and OCTA were performed. Foveal vascular density and parafoveal vascular density (PFVD), and foveal retinal thickness and parafoveal retinal thickness, choroidal thickness (CT) and retinal ganglion cell–inner plexiform layer (GCIPL) were compared between MacTel 2 patients and normal age-matched controls.

Results

The retinal whole vascular density and PFVD of the deep plexus were significantly lower in patients with MacTel 2 than that of the control group (56.93% vs. 58.54%, p = 0.003; and 60.38% vs. 61.66%, p = 0.045). The foveal avascular zone (FAZ) of the deep plexus was significantly enlarged in patients with MacTel 2 than that of the control group (0.44 vs. 0.36, p = 0.009). There was a positive and statistically significant correlation between the FAZ of the superficial and deep plexus and CT in patients with MacTel 2. There was a positive and statistically significant correlation between retinal whole, parafoveal temporal quadrant vascular density of the superficial and deep plexus and GCIPL thickness in patients with MacTel 2.

Conclusions

Our study demonstrated that important retinal vascular density and FAZ changes in MacTel 2 occur in the deep capillary plexus of the retina.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Yannuzzi LA, Bardal AM, Freund KB, Chen KJ, Eandi CM, Blodi B (2006) Idiopathic macular telangiectasia. Arch Ophthalmol 124(4):450–460

    Article  Google Scholar 

  2. Gass JD, Oyakawa RT (1982) Idiopathic juxtafoveolar retinal telangiectasis. Arch Ophthalmol 100(5):769–780

    Article  CAS  Google Scholar 

  3. Wu L, Evans T, Arevalo JF (2013) Idiopathic macular telangiectasia type 2 (idiopathic juxtafoveolar retinal telangiectasis type 2A, Mac Tel 2). Surv Ophthalmol 58(6):536–559

    Article  Google Scholar 

  4. Maruko I, Iida T, Sekiryu T, Fujiwara T (2008) Early morphological changes and functional abnormalities in group 2A idiopathic juxtafoveolar retinal telangiectasis using spectral domain optical coherence tomography and microperimetry. Br J Ophthalmol 92(11):1488–1491

    Article  CAS  Google Scholar 

  5. Albini TA, Benz MS, Coffee RE, Westfall AC, Lakhanpal RR, McPherson AR, Holz ER (2006) Optical coherence tomography of idiopathic juxtafoveolar telangiectasia. Ophthalmic Surg Lasers Imaging 37(2):120–128

    Article  Google Scholar 

  6. Paunescu LA, Ko TH, Duker JS, Chan A, Drexler W, Schuman JS, Fujimoto JG (2006) Idiopathic juxtafoveal retinal telangiectasis: new findings by ultrahigh-resolution optical coherence tomography. Ophthalmology 113(1):48–57

    Article  Google Scholar 

  7. Thorell MR, Zhang Q, Huang Y, An L, Durbin MK, Laron M, Sharma U, Stetson PF, Gregori G, Wang RK, Rosenfeld PJ (2014) Swept-source OCT angiography of macular telangiectasia type 2. Ophthalmic Surg Lasers Imaging Retina 45(5):369–380

    Article  Google Scholar 

  8. Chidambara L, Gadde SG, Yadav NK, Jayadev C, Bhanushali D, Appaji AM, Akkali M, Khurana A, Shetty R (2016) Characteristics and quantification of vascular changes in macular telangiectasia type 2 on optical coherence tomography angiography. Br J Ophthalmol 100(11):1482–1488

    Article  Google Scholar 

  9. de Carlo TE, Romano A, Waheed NK, Duker JS (2015) A review of optical coherence tomography angiography (OCTA). Int J Retina Vitreous 1:5

    Article  Google Scholar 

  10. Toto L, Di Antonio L, Mastropasqua R, Mattei PA, Carpineto P, Borrelli E, Rispoli M, Lumbroso B, Mastropasqua L (2016) Multimodal imaging of macular telangiectasia type 2: focus on vascular changes using optical coherence tomography angiography. Invest Ophthalmol Vis Sci 57(9):OCT268–OCT276

    Article  Google Scholar 

  11. Zhang Q, Wang RK, Chen CL, Legarreta AD, Durbin MK, An L, Sharma U, Stetson PF, Legarreta JE, Roisman L, Gregori G, Rosenfeld PJ (2015) Swept source OCT angiography of neovascular macular telangiectasia type 2. Retina 35(11):2285–2299

    Article  Google Scholar 

  12. Roisman L, Rosenfeld PJ (2016) Optical coherence tomography angiography of macular telangiectasia type 2. Dev Ophthalmol 56:146–158

    Article  Google Scholar 

  13. Spaide RF, Klancnik JM, Cooney MJ (2015) Retinal vascular layers in macular telangiectasia type 2 imaged by optical coherence tomographic angiography. JAMA Ophthalmol 133(1):66–73

    Article  Google Scholar 

  14. Gass JDM (1997) Stereoscopic atlas of macular diseases: diagnosis and treatment, vol 1, 4th edn. Mosby, St Louis

    Google Scholar 

  15. Koizumi H, Slakter JS, Spaide RF (2007) Full-thickness macular hole formation in idiopathic parafoveal telangiectasis. Retina 27(4):473–476

    Article  Google Scholar 

  16. Cohen SM, Cohen ML, El-Jabali F, Pautler SE (2007) Optical coherence tomography findings in nonproliferative group 2a idiopathic juxtafoveal retinal telangiectasis. Retina 27(1):59–66

    Article  Google Scholar 

  17. Powner MB, Gillies MC, Zhu M, Vevis K, Hunyor AP, Fruttiger M (2013) Loss of Muller’s cells and photoreceptors in macular telangiectasia type 2. Ophthalmology 120(11):2344–2352

    Article  Google Scholar 

  18. Bringmann A, Iandiev I, Pannicke T, Wurm A, Hollborn M, Wiedemann P, Osborne NN, Reichenbach A (2009) Cellular signaling and factors involved in Müller cell gliosis: neuroprotective and detrimental effects. Prog Retin Eye Res 28(6):423–451

    Article  CAS  Google Scholar 

  19. Unterlauft JD, Eichler W, Kuhne K, Yang XM, Yafai Y, Wiedemann P, Reichenbach A, Claudepierre T (2012) Pigment epithelium-derived factor released by Müller glial cells exerts neuroprotective effects on retinal ganglion cells. Neurochem Res 37(7):1524–1533

    Article  CAS  Google Scholar 

  20. Fletcher EL, Downie LE, Ly A, Ward MM, Batcha AH, Puthussery T, Yee P, Hatzopoulos KM (2008) A review of the role of glial cells in understanding retinal disease. Clin Exp Optom 91(1):67–77

    Article  Google Scholar 

  21. Newman EA (1993) Inward-rectifying potassium channels in retinal glial (Müller) cells. J Neurosci 13(8):3333–3345

    Article  CAS  Google Scholar 

  22. Wahlin KJ, Campochiaro PA, Zack DJ, Adler R (2000) Neurotrophic factors cause activation of intracellular signaling pathways in Müller cells and other cells of the inner retina, but not photoreceptors. Invest Ophthalmol Vis Sci 41(3):927–936

    CAS  PubMed  Google Scholar 

  23. Behzadian MA, Wang XL, Al-Shabrawey M, Caldwell RB (1998) Effects of hypoxia on glial cell expression of angiogenesis-regulating factors VEGF and TGF-beta. Glia 24(2):216–225

    Article  CAS  Google Scholar 

  24. Bai Y, Ma JX, Guo J, Wang J, Zhu M, Chen Y, Le YZ (2009) Müller cell-derived VEGF is a significant contributor to retinal neovascularization. J Pathol 219(4):446–454

    Article  CAS  Google Scholar 

  25. Shen W, Fruttiger M, Zhu L, Chung SH, Barnett NL, Kirk JK, Lee S, Coorey NJ, Killingsworth M, Sherman LS, Gillies MC (2012) Conditional Müller cell ablation causes independent neuronal and vascular pathologies in a novel transgenic model. J Neurosci 32(45):15715–15727

    Article  CAS  Google Scholar 

  26. Rodrigues M, Xin X, Jee K, Babapoor-Farrokhran S, Kashiwabuchi F, Ma T, Bhutto I, Hassan SJ, Daoud Y, Baranano D, Solomon S, Lutty G, Semenza GL, Montaner S, Sodhi A (2013) VEGF secreted by hypoxic Müller cells induces MMP-2 expression and activity in endothelial cells to promote retinal neovascularization in proliferative diabetic retinopathy. Diabetes 62(11):3863–3873

    Article  CAS  Google Scholar 

  27. Gass JD, Blodi BA (1993) Idiopathic juxtafoveolar retinal telangiectasis: update of classification and follow-up study. Ophthalmology 100(10):1536–1546

    Article  CAS  Google Scholar 

  28. Engelbrecht NE, Aaberg TM Jr, Sung J, Lewis ML (2002) Neovascular membranes associated with idiopathic juxtafoveolar telangiectasis. Arch Ophthalmol 120(3):320–324

    Article  Google Scholar 

  29. Chhablani J, Kozak I, Jonnadula GB, Venkata A, Narayanan R, Pappuru RR, Rao PS (2014) Choroidal thickness in macular telangiectasia type 2. Retina 34(9):1819–1823

    Article  Google Scholar 

  30. Nunes RP, Goldhardt R, de Amorim CA, Thorell MR, Abbey AM, Kuriyan AE, Modi YS, Shah M, Yehoshua Z, Gregori G, Feuer W, Rosenfeld PJ (2015) Spectral-domain optical coherence tomography measurements of choroidal thickness and outer retinal disruption in macular telangiectasia type 2. Ophthalmic Surg Lasers Imaging Retina 46(2):162–170

    Article  Google Scholar 

  31. Kumar V, Kumar P, Ravani R, Gupta P (2018) Macular telangiectasia type II with pachychoroid spectrum of macular disorders. Eur J Ophthalmol 1:1120672118769527. https://doi.org/10.1177/1120672118769527

    Article  Google Scholar 

  32. Spaide RF, Suzuki M, Yannuzzi LA, Matet A, Behar-Cohen F (2017) Volume-rendered angiographic and structural optical coherence tomography angiography of macular telangiectasia type 2. Retina 37(3):424–435

    Article  Google Scholar 

  33. Mao L, Weng SS, Gong YY, Yu SQ (2017) Optical coherence tomography angiography of macular telangiectasia type 1: comparison with mild diabetic macular edema. Lasers Surg Med 49(3):225–232

    Article  Google Scholar 

  34. Yu DY, Cringle SJ, Balaratnasingam C, Morgan WH, Yu PK, Su EN (2013) Retinal ganglion cells: energetics, compartmentation, axonal transport, cytoskeletons and vulnerability. Prog Retin Eye Res 36:217–246

    Article  CAS  Google Scholar 

  35. García-Ayuso D, Salinas-Navarro M, Agudo-Barriuso M, Alarcón-Martínez L, Vidal-Sanz M, Villegas-Pérez MP (2011) Retinal ganglion cell axonal compression by retinal vessels in light-induced retinal degeneration. Mol Vis 17:1716–1733

    PubMed  PubMed Central  Google Scholar 

  36. Garcia JM, Lima TT, Louzada RN, Rassi AT, Isaac DL, Avila M (2016) Diabetic macular ischemia diagnosis: comparison between optical coherence tomography angiography and fluorescein angiography. J Ophthalmol 2016:3989310

    PubMed  PubMed Central  Google Scholar 

  37. Jhingan M, Marsonia K, Shukla D, Rosenfeld PJ, Chhablani J (2017) Idiopathic macular telangiectasis type 2 and co-existent diabetic retinopathy. Int J Retina Vitreous 25(3):50

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Berna Dogan.

Ethics declarations

Conflict of interest

All authors declare that they have no conflict of interest.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Declaration of Helsinki and its later amendments or comparable ethical standards.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dogan, B., Erol, M.K., Akidan, M. et al. Retinal vascular density evaluated by optical coherence tomography angiography in macular telangiectasia type 2. Int Ophthalmol 39, 2245–2256 (2019). https://doi.org/10.1007/s10792-018-01060-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10792-018-01060-x

Keywords

Navigation