Skip to main content

Advertisement

Log in

Upregulated IRAK1 and IRAK4 promoting the production of IFN-γ and IL-17 in Behcet’s disease

  • Original Paper
  • Published:
International Ophthalmology Aims and scope Submit manuscript

Abstract

Purpose

To investigate the expression and function of IRAK1 and IRAK4 involved in the development of Behcet’s disease.

Methods

Twenty-eight Behcet’s patients and thirty-two normal subjects were involved in this study. The mRNA levels of IRAK1 and IRAK4 from active Behcet’s patients, inactive Behcet’s patients and normal controls were detected using real-time quantitative PCR. CD4+T cells were extracted from peripheral blood mononuclear cells of active Behcet’s patients and normal controls. After coculturing IRAK1/4 inhibitor with CD4+T cells in the presence of rIL-18 protein or rIL-1β protein for 3 days, the proliferation of CD4+T cells was measured using a modified MTT assay. Meanwhile, the levels of IFN-γ and IL-17 were detected by enzyme-linked immunosorbent assay.

Results

The mRNA levels of IRAK1 and IRAK4 were both significantly increased in active Behcet’s patients compared with those of inactive Behcet’s patients and normal subjects. However, there was no difference of IRAK1 mRNA level or the IRAK4 mRNA level between the inactive Behcet’s patients and normal controls. After coculturing with IRAK1/4 inhibitor, the proliferation of the CD4+T cells was inhibited both in active Behcet’s patients and in normal controls. Meanwhile, the expression of IFN-γ and IL-17 was also suppressed by IRAK1/4 inhibitor both in active Behcet’s patients and in normal subjects.

Conclusion

The high mRNA levels of IRAK1 and IRAK4 were correlated with the development of Behcet’s disease, which suggested that IRAK1 and IRAK4 might participate in the pathogenesis of Behcet’s disease. The inhibitory function of IRAK1/4 inhibitor prompts that it may be a new therapeutic target for treating this blindness disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Read RW, Holland GN, Rao NA, Tabbara KF, Ohno S, Arellanes-Garcia L et al (2001) Revised diagnostic criteria for Vogt–Koyanagi–Harada disease: report of an international committee on nomenclature. Am J Ophthalmol 131(5):647–652

    Article  CAS  PubMed  Google Scholar 

  2. Harrington LE, Hatton RD, Mangan PR, Turner H, Murphy TL, Murphy KM et al (2005) Interleukin 17-producing CD4+ effector T cells develop via a lineage distinct from the T helper type 1 and 2 lineages. Nat Immunol 6(11):1123–1132

    Article  CAS  PubMed  Google Scholar 

  3. Cao Z, Henzel WJ, Gao X (1996) IRAK: a kinase associated with the interleukin-1 receptor. Science 271(5252):1128–1131

    Article  CAS  PubMed  Google Scholar 

  4. Li S, Strelow A, Fontana EJ, Wesche H (2002) IRAK-4: a novel member of the IRAK family with the properties of an IRAK-kinase. Proc Natl Acad Sci U S A 99(8):5567–5572

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  5. Gottipati S, Rao NL, Fung-Leung WP (2008) IRAK1: a critical signaling mediator of innate immunity. Cell Signal 20(2):269–276

    Article  CAS  PubMed  Google Scholar 

  6. Deng C, Radu C, Diab A, Tsen MF, Hussain R, Cowdery JS et al (2003) IL-1 receptor-associated kinase 1 regulates susceptibility to organ-specific autoimmunity. J Immunol 170(6):2833–2842

    Article  CAS  PubMed  Google Scholar 

  7. Kanakaraj P, Ngo K, Wu Y, Angulo A, Ghazal P, Harris CA et al (1999) Defective interleukin (IL)-18-mediated natural killer and T helper cell type 1 responses in IL-1 receptor-associated kinase (IRAK)-deficient mice. J Exp Med 189(7):1129–1138

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  8. Jeong JJ, Jang SE, Hyam SR, Han MJ, Kim DH (2014) Mangiferin ameliorates colitis by inhibiting IRAK1 phosphorylation in NF-kappaB and MAPK pathways. Eur J Pharmacol 740:652–661

    Article  CAS  PubMed  Google Scholar 

  9. Xia P, Fang X, Zhang ZH, Huang Q, Yan KX, Kang KF et al (2012) Dysregulation of miRNA146a versus IRAK1 induces IL-17 persistence in the psoriatic skin lesions. Immunol Lett 148(2):151–162

    Article  CAS  PubMed  Google Scholar 

  10. Suzuki N, Suzuki S, Duncan GS, Millar DG, Wada T, Mirtsos C et al (2002) Severe impairment of interleukin-1 and Toll-like receptor signalling in mice lacking IRAK-4. Nature 416(6882):750–756

    Article  CAS  PubMed  Google Scholar 

  11. Picard C, Puel A, Bonnet M, Ku CL, Bustamante J, Yang K et al (2003) Pyogenic bacterial infections in humans with IRAK-4 deficiency. Science 299(5615):2076–2079

    Article  CAS  PubMed  Google Scholar 

  12. Kawagoe T, Sato S, Jung A, Yamamoto M, Matsui K, Kato H et al (2007) Essential role of IRAK-4 protein and its kinase activity in Toll-like receptor-mediated immune responses but not in TCR signaling. J Exp Med 204(5):1013–1024

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  13. Yang P, Fang W, Meng Q, Ren Y, Xing L, Kijlstra A (2008) Clinical features of chinese patients with Behcet’s disease. Ophthalmology 115(2):312.e4–318.e4

    Article  Google Scholar 

  14. de Smet MD, Dayan M (2000) Prospective determination of T-cell responses to S-antigen in Behcet’s disease patients and controls. Invest Ophthalmol Vis Sci 41(11):3480–3484

    PubMed  Google Scholar 

  15. Yamamoto JH, Minami M, Inaba G, Masuda K, Mochizuki M (1993) Cellular autoimmunity to retinal specific antigens in patients with Behcet’s disease. Br J Ophthalmol 77(9):584–589

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  16. Hamzaoui K, Hamzaoui A, Guemira F, Bessioud M, Hamza M, Ayed K (2002) Cytokine profile in Behcet’s disease patients. Relationship with disease activity. Scand J Rheumatol 31(4):205–210

    Article  PubMed  Google Scholar 

  17. Chi W, Yang P, Zhu X, Wang Y, Chen L, Huang X et al (2010) Production of interleukin-17 in Behcet’s disease is inhibited by cyclosporin A. Mol Vis 16:880–886

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Sun M, Yang P, Du L, Yang Y, Ye J (2014) The role of interleukin-1 receptor-associated kinases in Vogt–Koyanagi–Harada disease. PLoS ONE 9(4):e93214

    Article  PubMed Central  PubMed  Google Scholar 

  19. Criteria for diagnosis of Behcet’s disease (1990) International Study group for Behcet’s disease. Lancet 335(8697):1078–1080

    Google Scholar 

  20. Patra MC, Choi S (2016) Recent progress in the molecular recognition and therapeutic importance of interleukin-1 receptor-associated kinase 4. Molecules 21(11):E1529

    Article  PubMed  Google Scholar 

  21. Talreja J, Talwar H, Ahmad N, Rastogi R, Samavati L (2016) Dual inhibition of Rip2 and IRAK1/4 regulates IL-1beta and IL-6 in sarcoidosis alveolar macrophages and peripheral blood mononuclear cells. J Immunol 197(4):1368–1378

    Article  CAS  PubMed  Google Scholar 

  22. Lakoski SG, Li L, Langefeld CD, Liu Y, Howard TD, Brosnihan KB et al (2007) The association between innate immunity gene (IRAK1) and C-reactive protein in the diabetes heart study. Exp Mol Pathol 82(3):280–283

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  23. Thomas JA, Haudek SB, Koroglu T, Tsen MF, Bryant DD, White DJ et al (2003) IRAK1 deletion disrupts cardiac Toll/IL-1 signaling and protects against contractile dysfunction. Am J Physiol Heart Circ Physiol 285(2):H597–H606

    Article  CAS  PubMed  Google Scholar 

  24. Valaperti A, Nishii M, Liu Y, Naito K, Chan M, Zhang L et al (2013) Innate immune interleukin-1 receptor-associated kinase 4 exacerbates viral myocarditis by reducing CCR5(+) CD11b(+) monocyte migration and impairing interferon production. Circulation 128(14):1542–1554

    Article  CAS  PubMed  Google Scholar 

  25. Yazici H (2004) The lumps and bumps of Behcet’s syndrome. Autoimmun Rev 3(Suppl 1):S53–S54

    PubMed  Google Scholar 

  26. Guenane H, Hartani D, Chachoua L, Lahlou-Boukoffa OS, Mazari F, Touil-Boukoffa C (2006) Production of Th1/Th2 cytokines and nitric oxide in Behcet’s uveitis and idiopathic uveitis. J Fr Ophtalmol 29(2):146–152

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This study was supported by National Natural Science Foundation Project Grant 81200679. The funders had no role in study design, data collection and analysis, decision to publish or preparation of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Min Sun or Jian Ye.

Ethics declarations

Conflict of interest

All authors declare that he/she has no conflict of interest.

Ethical approval

All procedures performed in studies were in accordance with the ethical standards of the Ethics Committee of the Third Affiliated Hospital of the Third Military Medical University and with the 1964 Helsinki Declaration and its later amendments or comparable ethical standards.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, M., Yang, P., Yang, Y. et al. Upregulated IRAK1 and IRAK4 promoting the production of IFN-γ and IL-17 in Behcet’s disease. Int Ophthalmol 38, 1947–1953 (2018). https://doi.org/10.1007/s10792-017-0682-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10792-017-0682-4

Keywords

Navigation