Topography and correlation of radial peripapillary capillary density network with retinal nerve fibre layer thickness

  • Tarannum Mansoori
  • Jayanthi Sivaswamy
  • Jahnavi Sai Gamalapati
  • Nagalla Balakrishna
Original Paper
  • 138 Downloads

Abstract

Purpose

To analyse the expansion of radial peripapillary capillary (RPC) network with optical coherence tomography angiography (OCT-A) in normal human eyes and correlate RPC density with retinal nerve fibre layer thickness (RNFLT) at various distances from the optic nerve head (ONH) edge.

Methods

Fifty eyes of 50 healthy subjects underwent imaging with RTVue XR-100 Avanti OCT. OCT-A scans of Angio disc (6 × 6 mm) and Angio retina (8 × 8 mm) were combined to create a wide-field montage image of the RPC network. RPC density and RNFLT was calculated at different circle diameter around the ONH, and their correlation was measured.

Results

In the arcuate region, RPC was detected as far as 8.5 mm from the ONH edge, but not around the perifoveal area within 0.025 ± 0.01 mm2. The mean RPC density (0.1556 ± 0.015) and RNFLT (245.96 ± 5.79) were highest at 1.5 mm from ONH margin, and there was a trend in its decline, in a distance-dependent manner, with the least density at 8.5 mm (all P < 0.0001). Highest RPC density was noted in the arcuate fibre region at all the distances. Overall mean RPC density correlated significantly (P < 0.0001) with the overall mean RNFLT.

Conclusions

Wide-field montage OCT-A angiograms can visualize expansion of the RPC network, which is useful in obtaining information about various retinal disorders. The results obtained support the hypothesis that the RPC network could be responsible for RNFL nourishment.

Keywords

Radial peripapillary capillary Retinal nerve fibre layer thickness Optical coherence tomography angiography Montage image 

References

  1. 1.
    Henkind P (1967) Radial peripapillary capillaries of the retina I. Anatomy: human and comparative. Br J Ophthalmol 51:115–123CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Chan G, Balaratnasingam C, Xu J, Mammo Z, Han S, Mackenzie P et al (2015) In vivo optical imaging of human retinal capillary networks using speckle variance optical coherence tomography with quantitative clinico-histological correlation. Microvasc Res 100:32–39CrossRefPubMedGoogle Scholar
  3. 3.
    Toussaint D, Kuwabara T, Cogan DG (1961) Retinal vascular patterns. II. Human retinal vessels studied in three dimensions. Arch Ophthalmol 65:575–581CrossRefPubMedGoogle Scholar
  4. 4.
    Scoles D, Gray DC, Hunter JJ, Wolfe R, Gee BP, Geng Y et al (2009) In-vivo imaging of retinal nerve fiber layer vasculature: imaging histology comparison. BMC Ophthalmol 9:9CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Spaide RF, Klancnik JM Jr, Cooney MJ (2015) Retinal vascular layersimaged by fluorescein angiography and optical coherencetomography angiography. JAMA Ophthalmol 133:45–50CrossRefPubMedGoogle Scholar
  6. 6.
    Yu PK, Balaratnasingam C, Xu J, Morgan WH, Mammo Z, Han S et al (2015) Label-free density measurements of radial peripapillary capillaries in the human retina. PLoS ONE 10:e0135151CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Yu PK, Cringle SJ, Yu DY (2014) Correlation between the radial peripapillary capillaries and the retinal nerve fibre layer in the normal human retina. Exp Eye Res 129:83–92CrossRefPubMedGoogle Scholar
  8. 8.
    Mase T, Ishibazawa A, Nagaoka T, Yokota H, Yoshida A (2016) Radial peripapillary capillary network visualized using wide-field montage optical coherence tomography angiography. Invest Ophthalmol Vis Sci 57:504–510CrossRefGoogle Scholar
  9. 9.
    Mansoori T, Sivaswamy J, Gamalapati JS, Agraharam SG, Balakrishna N (2017) Measurement of radial peripapillary capillary density in the normal human retina using optical coherence tomography angiography. J Glaucoma 26:241–246CrossRefPubMedGoogle Scholar
  10. 10.
    Kraus MF, Potsaid B, Mayer MA, Bock R, Baumann B, Liu JJ et al (2012) Motion correction in optical coherence tomography volumes on a per A-scan basis using orthogonal scan patterns. Biomed Opt Express 3:1182–1199CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Jia Y, Tan O, Tokayer J, Potsaid B, Wang Y, Liu JJ et al (2012) Split-spectrum amplitude decorrelation angiography with optical coherence tomography. Opt Express 20:4710–4725CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Chen J, Smith R, Tian J, Laine AF (2008) A novel registration method for retinal images based on local features. Conf Proc IEEE Eng Med Biol Soc. 2008:2242–2245PubMedPubMedCentralGoogle Scholar
  13. 13.
    Frangi AF, Niessen WJ, Vincken KL, Viergever MA (1998) Multiscale vessel enhancement filtering. Lecture Notes in Computer Science, vol 1496, pp 130–137Google Scholar
  14. 14.
    De Carlo TE, Salz DA, Waheed NK, Baumal CR, Duker JS, Witkin AJ (2015) Visualization of the retinal vasculature using wide field montage optical coherence tomography angiography. Ophthalmic Surg Lasers Imaging Retina 46:611–616PubMedGoogle Scholar
  15. 15.
    Alterman M, Henkind P (1968) Radial peripapillary capillaries of the retina II. Possible role in Bjerrum scotoma. Br J Ophthalmol 52:26–31CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2017

Authors and Affiliations

  • Tarannum Mansoori
    • 1
  • Jayanthi Sivaswamy
    • 2
  • Jahnavi Sai Gamalapati
    • 2
  • Nagalla Balakrishna
    • 3
  1. 1.Sita Lakshmi glaucoma center, Anand Eye InstituteHyderabadIndia
  2. 2.International Institute of Information TechnologyHyderabadIndia
  3. 3.National Institute of NutritionHyderabadIndia

Personalised recommendations