International Ophthalmology

, Volume 38, Issue 1, pp 43–52 | Cite as

The role of patient’s systemic characteristics and plateletcrit in developing toxic anterior segment syndrome after uneventful phaco surgery: A case–control study

  • Serpil Yazgan
  • Ugur Celik
  • Orhan Ayar
  • Suat Hayri Ugurbas
  • Burcu Celik
  • Mehmet Orçun Akdemir
  • Silay Canturk Ugurbas
  • Atilla Alpay
Original Paper



To compare the systemic and ocular characteristics and laboratory findings of patients developing toxic anterior segment syndrome (TASS) after uneventful phaco surgery with unaffected subjects undergoing the same surgery in the same session.


A retrospective case–control study.


The study group consisted of 26 eyes of 26 patients who underwent uneventful phaco surgery and who went on to develop TASS, while the control group included 39 subjects who had routine phaco surgery in the same session by the same surgeon. The sterilization stages of reusable instruments, disposable instruments, and compositions were recorded. The preoperative systemic diseases, complete blood count parameters, glycosylated hemoglobin (HbA1c), biochemical parameters, thyroid hormone profiles, and the surgical features were compared between the two groups.


Type 2 diabetes mellitus (DM), systemic hypertension (HT), hyperlipidemia, chronic ischaemic heart disease, and chronic renal failure were significantly more common in the TASS group (p < 0.05). Proliferative diabetic retinopathy was also more frequent in the TASS group (p = 0.003). Mean HbA1c% values, white blood cell count, neutrophil/lymphocyte ratio, platelet counts, platelet distribution width, and plateletcrit parameters were significantly higher in the TASS group (p < 0.05). Multivariate logistic regression analysis revealed that a high plateletcrit level (p = 0.001, odds ratio [95% CI]; 22.27 [3.36–147.76]) and systemic HT (p = 0.044, odds ratio [95% CI]; 7.13 [1.05–48.12]) are independently associated with the development of TASS.


Although TASS may arise as a result of insufficient sterilization of instruments or intraocular solutions, patient factors may also contribute to its development. Systemic vascular disorders such as uncontrolled type 2 DM, systemic hypertension, and hyperlipidemia may increase the risk of TASS after uneventful phaco surgery. Abnormal parameters associated with systemic inflammation, such as higher plateletcrit level, may facilitate the development of TASS. These findings may be a predicting factor of TASS development for uneventful cataract surgeries.


Plateletcrit Systemic diseases Toxic anterior segment syndrome 


Author contribution

Involved in design and conduct of the study (U.C., S.Y., S.H.U., M.O.A.); preparation and review of the study (UC., B.C., S.C.U., O.A.).

Compliance with ethical standards

Conflict of interest

None of the authors has financial or proprietary interests in any material or method mentioned.


  1. 1.
    Nelson DB, Donnenfeld ED, Perry HD (1992) Sterile endophthalmitis after sutureless cataract surgery. Ophthalmology 99:1655–1657CrossRefPubMedGoogle Scholar
  2. 2.
    Monson MC, Mamalis N, Olson RJ (1992) Toxic anterior segment inflammation following cataract surgery. J Cararact Refract Surg 18:184–189CrossRefGoogle Scholar
  3. 3.
    Parikh C, Sippy BD, Martin DF, Edelhauser HF (2002) Effects of enzymatic sterilization detergents on the corneal endothelium. Arch Ophthalmol 120:165–172CrossRefPubMedGoogle Scholar
  4. 4.
    Nuyts RM, Edelhauser HF, Pels E, Breebaart AC (1990) Toxic effects of detergents on the corneal endothelium. Arch Ophthalmol 108:1158–1162CrossRefPubMedGoogle Scholar
  5. 5.
    Choi JS, Shyn KH (2008) Development of toxic anterior segment syndrome immediately after uneventful phaco surgery. Korean J Ophthalmol 22:220–227CrossRefPubMedCentralPubMedGoogle Scholar
  6. 6.
    Jun EJ, Chung SK (2010) Toxic anterior segment syndrome after cataract surgery. J Cataract Refract Surg 36:344–346CrossRefPubMedGoogle Scholar
  7. 7.
    Maier P, Birnbaum F, Böhringer D, Reinhard T (2008) Toxic anterior segment syndrome following penetrating keratoplasty. Arch Ophthalmol 126:1677–1681CrossRefPubMedGoogle Scholar
  8. 8.
    Calogero D, Buchen SY, Tarver M, Hilmantel G, Lucas AD, Eydelman MB (2012) Evaluation of intraocular reactivity to metallic and ethylene oxide contaminants of medical devices in a rabbit model. Ophthalmology 119:36–42CrossRefGoogle Scholar
  9. 9.
    Unal M, Yücel I, Akar Y, Oner A, Altin M (2006) Outbreak of toxic anterior segment syndrome associated with glutaraldehyde after cataract surgery. J Cataract Refract Surg 32:1696–1701CrossRefPubMedGoogle Scholar
  10. 10.
    Kutty PK, Forster TS, Wood-Koob C et al (2008) Multistate outbreak of toxic anterior segment syndrome, 2005. J Cataract Refract Surg 34:585–590CrossRefPubMedGoogle Scholar
  11. 11.
    Kremer I, Levinger E, Levinger S (2010) Toxic anterior segment syndrome following iris-supported phakic IOL implantation with viscoelastic Multivisc BD. Eur J Ophthalmol 20:451–453CrossRefPubMedGoogle Scholar
  12. 12.
    Xiao J, Wu S, Wang Y, Li J, Zhang S (1993) Inhibitory effects of tetrandrine on bovine serum albumin-induced uveitis in rabbits. J Ocul Pharmacol. 9:151–156CrossRefPubMedGoogle Scholar
  13. 13.
    Eydelman MB, Tarver ME, Calogero D, Buchen SY, Alexander KY (2012) The Food and Drug Administration’s proactive toxic anterior segment syndrome program. Ophthalmology 119:1297–1302CrossRefPubMedGoogle Scholar
  14. 14.
    Chylack LTJ, Wolfe JK, Singer DM et al (1993) The lens opacities classification system III. Arch Ophthalmol 111:831–836CrossRefPubMedGoogle Scholar
  15. 15.
    Hajian-Tilaki K (2013) Receiver operating characteristic (ROC) curve analysis for medical diagnostic test evaluation. Casp J Intern Med Spring 4(2):627–635 (Review) Google Scholar
  16. 16.
    Florkowski CM (2008) Sensitivity, specificity, receiver-operating characteristic (ROC) curves and likelihood ratios: communicating the performance of diagnostic tests. Clin Biochem Rev 29(Suppl 1):S83–S87PubMedCentralPubMedGoogle Scholar
  17. 17.
    Richburg FA, Reidy JJ, Apple DJ, Olson RJ (1986) Sterile hypopyon secondary to ultrasonic cleaning solution. J Cataract Refract Surg 12:248–251CrossRefPubMedGoogle Scholar
  18. 18.
    Kreisler KR, Martin SS, Young CW, Anderson CW, Mamalis N (1992) Postoperative inflammation following cataract extraction caused by bacterial contamination of the cleaning bath detergent. J Cataract Refract Surg 18:106–110CrossRefPubMedGoogle Scholar
  19. 19.
    Smith CA, Khoury JM, Shields SM et al (2000) Unexpected corneal endothelial cell decompensation after intraocular surgery with instruments sterilized by plasma gas. Ophthalmology 107:1561–1567CrossRefPubMedGoogle Scholar
  20. 20.
    Duffy RE, Brown SE, Caldwell KL et al (2000) An epidemic of corneal destruction caused by plasma gas sterilization. The toxic cell destruction syndrome investigative team. Arch Ophthalmol 118:1167–1176CrossRefPubMedGoogle Scholar
  21. 21.
    Huang Y, Dai Y, Wu X, Lan J, Xie L (2010) Toxic anterior segment syndrome after pediatric cataract surgery. J AAPOS 14:444–446CrossRefPubMedGoogle Scholar
  22. 22.
    Cutler Peck CM, Brubaker J, Clouser S, Danford C, Edelhauser HE, Mamalis N (2010) Toxic anterior segment syndrome: common causes. J Cataract Refract Surg 36:1073–1080CrossRefPubMedGoogle Scholar
  23. 23.
    Litwin AS, Pimenides D (2012) Toxic anterior segment syndrome after cataract surgery secondary to subconjunctival gentamicin. J Cataract Refract Surg 38:2196–2197CrossRefPubMedGoogle Scholar
  24. 24.
    Buzard K, Zhang JR, Thumann G, Stripecke R, Sunalp M (2010) Two cases of toxic anterior segment syndrome from generic trypan blue. J Cataract Refract Surg 36:2195–2199CrossRefPubMedGoogle Scholar
  25. 25.
    Mao D, Peng H, Li Q, Wang J, Li P, Hu K, Zhang X, Lei B (2012) Aqueous humor and plasma adiponectin levels in proliferative diabetic retinopathy patients. Curr Eye Res 37(9):803–808CrossRefPubMedGoogle Scholar
  26. 26.
    Rangasamy S, McGuire PG, Das A (2012) Diabetic retinopathy and inflammation: novel therapeutic targets. Middle East Afr J Ophthalmol 19(1):52–59CrossRefPubMedCentralPubMedGoogle Scholar
  27. 27.
    Klaassen I, Van Noorden CJ, Schlingemann RO (2013) Molecular basis of the inner blood-retinal barrier and its breakdown in diabetic macular edema and other pathological conditions. Prog Retina Eye Res 34:19–48CrossRefGoogle Scholar
  28. 28.
    Bhagat N, Grigorian RA, Tutela A, Zarbin MA (2009) Diabetic macular edema pathogenesis and treatment. Surv Ophthalmol 54(1):1–32 (Review) CrossRefPubMedGoogle Scholar
  29. 29.
    Zarnowski T, Machowicz-Matejko E, Zagórski Z (2002) [Anterior chamber inflammation following cataract surgery in patients with non-insulin-dependent diabetes mellitus]. Klin Oczna 104(5–6):354–356 (In Polish) PubMedGoogle Scholar
  30. 30.
    Manfré L, Midiri M, Giuffré G, Mangiameli A, Cardella G, Ponte F, De Maria M, Lagalla R (1997) Blood-ocular barrier damage: use of contrast-enhanced MRI. Eur Radiol 7(1):110–114CrossRefPubMedGoogle Scholar
  31. 31.
    Salazar JJ, Ramírez AI, de Hoz R, Rojas B, Ruiz E, Tejerina T et al (2007) Alterations in the choroid in hypercholesterolemic rabbits: reversibility after normalization of cholesterol levels. Exp Eye Res 84(3):412–422CrossRefPubMedGoogle Scholar
  32. 32.
    Shibata M, Sugiyama T, Hoshiga M, Hotchi J, Okuno T, Oku H et al (2011) Changes in optic nerve head blood flow, visual function, and retinal histology in hypercholesterolemic rabbits. Exp Eye Res 93(6):818–824CrossRefPubMedGoogle Scholar
  33. 33.
    Triviño A, Ramírez AI, Salazar JJ, de Hoz R, Rojas B, Padilla E et al (2006) A cholesterol-enriched diet induces ultrastructural changes in retinal and macroglial rabbit cells. Exp Eye Res 83(2):357–366CrossRefPubMedGoogle Scholar
  34. 34.
    Wu CC, Chang SW, Chen MS, Lee YT (1995) Early change of vascular permeability in hypercholesterolemic rabbits. Arterioscler Thromb Vasc Biol 15(4):529–533CrossRefPubMedGoogle Scholar
  35. 35.
    Mirsaeidi M, Peyrani P, Aliberti S, Filardo G, Bordon J, Blasi F, Ramirez JA (2010) Thrombocytopenia and thrombocytosis at time of hospitalization predict mortality in patients with community-acquired pneumonia. Chest 137(2):416–420CrossRefPubMedGoogle Scholar
  36. 36.
    Tvedten H, Lilliehöök I, Hillström A et al (2008) Plateletcrit is superior to platelet count for assessing platelet status in Cavalier King Charles Spaniels. Vet Clin Pathol 37:266–271CrossRefPubMedGoogle Scholar
  37. 37.
    Akpinar I, Sayin MR, Gursoy YC et al (2014) Plateletcrit and red cell distribution width are independent predictors of the slow coronary flow phenomenon. J Cardiol 63:112–118CrossRefPubMedGoogle Scholar
  38. 38.
    Tüzün A, Keskin O, Yakut M, Kalkan C, Soykan I (2014) The predictive value of mean platelet volume, plateletcrit and red cell distribution width in the differentiation of autoimmune gastritis patients with and without type I gastric carcinoid tumors. Platelets 25:363–366CrossRefPubMedGoogle Scholar
  39. 39.
    Yazgan S, Celik U, Kaldrm H, Ayar O, Akdemir MO (2015) Plateletcrit in ocular pseudoexfoliation syndrome. Eye Contact Lens 42:328–332CrossRefGoogle Scholar
  40. 40.
    Sahin F, Yazar E, Yıldız P (2012) Prominent features of platelet count, plateletcrit, mean platelet volume and platelet distribution width in pulmonary tuberculosis. Multidiscip Respir Med 7(1):38CrossRefPubMedCentralPubMedGoogle Scholar
  41. 41.
    Kaya MG, Akpek M, Lam YY et al (2013) Prognostic value of neutrophil/lymphocyte ratio in patients with ST-elevated myocardial infarction undergoing primary coronary intervention: a prospective, multicenter study. Int J Cardiol 168(1154–9):10–12Google Scholar
  42. 42.
    Kayrak M, Erdogan HI, Solak Y et al (2014) Prognostic value of neutrophil to lymphocyte ratio in patients with acute pulmonary embolism: a retrospective study. Heart Lung Circ 23:56–62CrossRefPubMedGoogle Scholar
  43. 43.
    Arbel Y, Shacham Y, Ziv-Baran T, Laufer Perl M, Finkelstein A, Halkin A, Revivo M, Milwidsky A, Berliner S, Herz I, Keren G, Banai S (2014) Higher neutrophil/lymphocyte ratio is related to lower ejection fraction and higher long-term all-cause mortality in ST-elevation myocardial infarction patients. Can J Cardiol 30(10):1177–1182CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2017

Authors and Affiliations

  • Serpil Yazgan
    • 1
  • Ugur Celik
    • 2
    • 4
  • Orhan Ayar
    • 1
  • Suat Hayri Ugurbas
    • 1
  • Burcu Celik
    • 3
  • Mehmet Orçun Akdemir
    • 1
  • Silay Canturk Ugurbas
    • 1
  • Atilla Alpay
    • 1
  1. 1.Department of Ophthalmology, Medical FacultyBulent Ecevit UniversityZonguldakTurkey
  2. 2.Department of Ophthalmology, Medical FacultyIstanbul Medeniyet UniversityIstanbulTurkey
  3. 3.Department of OphthalmologyHaydarpasa Training and Research HospitalIstanbulTurkey
  4. 4.Sahrayicedid MahallesiIstanbulTurkey

Personalised recommendations