Skip to main content

Advertisement

Log in

Characteristics of higher-order aberrations and anterior segment tomography in patients with pathologic myopia

  • Original Paper
  • Published:
International Ophthalmology Aims and scope Submit manuscript

Abstract

Purpose

To investigate prospectively the characteristics in the higher-order aberrations and anterior segment tomography in patients with pathologic myopia.

Methods

One hundred and twelve consecutive highly myopic patients (mean age 43.4 ± 9.3 years, spherical equivalent of refractive error ≥8 D and an axial length ≥26.5 mm) were studied. Thirty-seven emmetropic individuals (mean age 37.0 ± 14.5 years, spherical equivalent of refractive error ≤ ±1 D) were analyzed as controls. The ocular and cornea higher-order aberrations were measured using a Hartmann–Shack wavefront sensor (KR-1W; Topcon Corporation, Tokyo, Japan). The crystalline lens rise, the angle-to-angle, and the white-to-white values were measured using anterior segment OCT (SS-1000; Tomey Corporation, Nagoya, Japan). The mean curvature of the anterior corneal surface, the thickness at the thinnest central corneal point, the location of the central corneal point, the corneal volume, the anterior chamber volume, and the anterior chamber depth were measured using the Pentacam HR (Oculus, Inc., Wetzlar, Germany).

Results

The ocular total higher-order aberration for 4-mm pupil, the ocular spherical aberrations, and internal spherical aberration for 6-mm pupil were significantly higher in highly myopic eyes than in the emmetropic controls. The crystalline lens rise was significantly smaller in highly myopic eyes than in the emmetropic controls. The anterior chamber depth and the anterior chamber volume were significantly larger in highly myopic eyes than in the emmetropic controls.

Conclusion

Highly myopic eyes had higher-order aberrations than emmetropic eyes because of the increasing internal aberrations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Curtin BJ (1985) Basic science and clinical management. In: Curtin BJ (ed) The myopias. Harper and Row, New York

    Google Scholar 

  2. Curtin BJ (1977) The posterior staphyloma of pathologic myopia. Trans Am Ophthalmol Soc 75:67–86

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Moriyama M, Ohno-Matsui K, Hayashi K, Shimada N, Yoshida T, Tokoro T et al (2011) Topographical analyses of shape of eyes with pathologic myopia by high-resolution three dimensional magnetic resonance imaging. Ophthalmology 118(8):1626–1637

    Article  PubMed  Google Scholar 

  4. Charman WN (2005) Aberrations and myopia. Ophthalmic Physiol Opt 25(4):285–301

    Article  CAS  PubMed  Google Scholar 

  5. Buehren T, Collins MJ, Carney LG (2005) Near work induced wavefront aberrations in myopia. Vis Res 45(10):1297–1312

    Article  PubMed  Google Scholar 

  6. He JC, Sun P, Held R, Thorn F, Sun X, Gwiazda JE (2002) Wavefront aberrations in eyes of emmetropic and moderately myopic school children and young adults. Vis Res 42(8):1063–1070

    Article  PubMed  Google Scholar 

  7. Kirwan C, O’Keefe M, Soeldner H (2006) Higher-order aberrations in children. Am J Ophthalmol 141(1):67–70

    Article  PubMed  Google Scholar 

  8. Marcos S, Barbero S, Llorente L (2002) The sources of optical aberrations in myopic eyes. Invest Ophthalmol Vis Sci 43(13):1510

    Google Scholar 

  9. Atchison DA, Schmid KL, Pritchard N (2006) Neural and optical limits to visual performance in myopia. Vis Res 46(21):3707–3722

    Article  PubMed  Google Scholar 

  10. Carkeet A, Luo HD, Tong L, Saw SM, Tan DT (2002) Refractive error and monochromatic aberrations in Singaporean children. Vis Res 42(14):1809–1824

    Article  PubMed  Google Scholar 

  11. Cheng X, Bradley A, Hong X, Thibos LN (2003) Relationship between refractive error and monochromatic aberrations of the eye. Optom Vis Sci 80(1):43–49

    Article  PubMed  Google Scholar 

  12. Chang SW, Tsai IL, Hu FR, Lin LL, Shih YF (2001) The cornea in young myopic adults. Br J Ophthalmol 85(8):916–920

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Cho P, Lam C (1999) Factors affecting the central corneal thickness of Hong Kong-Chinese. Curr Eye Res 18(5):368–374

    Article  CAS  PubMed  Google Scholar 

  14. Fam HB, How AC, Baskaran M, Lim KL, Chan YH, Aung T (2006) Central corneal thickness and its relationship to myopia in Chinese adults. Br J Ophthalmol 90(12):1451–1453

    Article  PubMed  PubMed Central  Google Scholar 

  15. Manche E (2011) Aberrometry: Hartmann–Shack or tscherning? Refract Eyecare 15(7):24

    Google Scholar 

  16. Baikoff G, Lutun E, Ferraz C, Wei J (2004) Static and dynamic analysis of the anterior segment with optical coherence tomography. J Cataract Refract Surg 30(9):1843–1850

    Article  PubMed  Google Scholar 

  17. He JC, Gwiazda J, Thorn F, Held R, Vera-Diaz FA (2005) The association of wavefront aberration and accommodative lag in myopes. Vis Res 45(3):285–290

    Article  PubMed  Google Scholar 

  18. Philip K, Martinez A, Ho A, Conrad F, Ale J, Mitchell P et al (2012) Total ocular, anterior corneal and lenticular higher-order aberrations in hyperopic, myopic and emmetropic eyes. Vis Res 52(1):31–37

    Article  PubMed  Google Scholar 

  19. Khan MS, Humayun S, Fawad A, Ishaq M, Arzoo S, Mashhadi F (2015) Comparison of higher order aberrations in patients with various refractive errors. Pak J Med Sci. 31(4):812–815

    PubMed  PubMed Central  Google Scholar 

  20. Kwan WC, Yip SP, Yap MK (2009) Monochromatic aberrations of the human eye and myopia. Clin Exp Optom 92(3):304–312

    Article  PubMed  Google Scholar 

  21. Llorente L, Barbero S, Cano D, Dorronsoro C, Marcos S (2004) Myopic versus hyperopic eyes: axial length, corneal shape and optical aberrations. J Vis 4(4):288–298

    Article  PubMed  Google Scholar 

  22. Martinez AA, Sankaridurg PR, Naduvilath TJ, Mitchell P (2009) Monochromatic aberrations in hyperopic and emmetropic children. J Vis 9(1):23.1–23.14

    Article  Google Scholar 

  23. Fujikado T, Kuroda T, Ninomiya S, Maeda N, Tano Y, Ohshika T, Hirohara Y, Mihashi T (2004) Age-related changes in ocular and corneal aberrations. Am J Ophthalmol 138:143–146

    Article  PubMed  Google Scholar 

  24. Richdale K, Bullimore MA, Sinnott LT, Zadnik K (2016) The effect of age, accommodation, and refractive error on the adult human eye. Optom Vis Sci 93(1):3–11

    Article  PubMed  PubMed Central  Google Scholar 

  25. Bao FJ, Yu AY, Kassam W, Wang QM, Elisheikh A (2010) Biometry of the cornea in myopic Chinese patients. J Refract Surg 26(5):1–11

    Google Scholar 

  26. Xie R, Zhou XT, Lu F, Chen M, Xue A, Chen S, Qu J (2009) Correlation between myopia and major biometric parameters of the eye. A retrospective clinical study. Optom Vis Sci 86(5):503–508

    Article  Google Scholar 

  27. Carney LG, Mainstone JC, Henderson A (1997) Corneal topography and myopia. Invest Ophthalmol Vis Sci 38(2):311–320

    CAS  PubMed  Google Scholar 

  28. Shen M, Fan F, Xue A, Wang J, Zhou X, Lu F (2008) Biomechanical propreties of the cornea in high myopia. Vis Res 48(21):2167–2171

    Article  PubMed  Google Scholar 

  29. Ashwin PT, Shah S, Pushpoth S, Wehbeh L, Ilango B (2009) The relationship of central corneal thickness (CCT) to thinnest central cornea (TCC) in healthy adults. Cont Lens Anterior Eye 32(2):64–67

    Article  PubMed  Google Scholar 

  30. Hashemi H, Asgari S, Mehravaran S, Emamian MH, Shariati M, Fotouhi A (2011) The distribution of corneal thickness in a 40- to 64-year-old population of Shahroud, Iran. Cornea 30(12):1409–1413

    Article  PubMed  Google Scholar 

  31. Hashemi M, Falavarjani KG, Aghai GH, Aghdam KA, Gordiz A (2013) Anterior segment study with the Pentacam Scheimpflug Camera in refractive surgery candidates. Middle East Afr J Ophthalmol 20(3):212–216

    Article  PubMed  PubMed Central  Google Scholar 

  32. Hosny M, Alio JL, Claramonte P, Attia WH, Perez-Santonja JJ (2000) Relationship between anterior chamber depth, refractive state, corneal diameter, and axial length. J Refract Surg 16:336–340

    CAS  PubMed  Google Scholar 

  33. Alfonso JF, Ferrer-Blasco T, Gonzalez-Meijome JM, Garcia-Manjarres M, Peixoto-de-Matos SC, Montes-Mico R (2010) Pupil size, white-to-white corneal diameter, and anterior chamber depth in patients with myopia. J Refract Surg 26(11):891–898

    Article  PubMed  Google Scholar 

  34. Park SH, Park KH, Kim JM, Choi CY (2010) Relation between axial length and ocular parameters. Ophthalmologica 224:188–193

    Article  PubMed  Google Scholar 

  35. Reinstein DZ, Archer TJ, Silverman RH, Coleman J (2009) Correlation of anterior chamber angle and ciliary sulcus diameters with white-to-white corneal diameter in high myopes using Artemis VHF digital ultrasound. J Refract Surg 25:185–194

    PubMed  PubMed Central  Google Scholar 

  36. Baikoff G, Bourgeon G, Jodai HJ, Fontaine A, Lellis FV, Trinquet L (2005) Pigment dispersion and Artisan phakic intraocular lenses. J Cataract Refract Surg 31:674–680

    Article  PubMed  Google Scholar 

  37. Ucakhan OO, Gesoqlu P, Ozkan M, Kanpolat A (2008) Corneal elevation and thickness in relation to the refractive status measured with the Pentacam Scheimpflug system. J Cataract Refrant Surg. 34(11):1900–1905

    Article  Google Scholar 

  38. Saika M, Maeda N, Hirohara Y, Mihashi T, Fujikado T, Nishida K (2013) Four discriminant models for detecting keratoconus pattern using Zernike coefficients of corneal aberrations. Jpn J Ophthalmol 57:503–509

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

The authors thank Prof. Duco Hamasaki for his critical discussion and final manuscript revision.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kyoko Ohno-Matsui.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kasahara, K., Maeda, N., Fujikado, T. et al. Characteristics of higher-order aberrations and anterior segment tomography in patients with pathologic myopia. Int Ophthalmol 37, 1279–1288 (2017). https://doi.org/10.1007/s10792-016-0356-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10792-016-0356-7

Keywords

Navigation