Skip to main content

Advertisement

Log in

Reproducibility of choroidal thickness measurements in subjects on 3 spectral domain optical coherence tomography machines

  • Original Paper
  • Published:
International Ophthalmology Aims and scope Submit manuscript

Abstract

The purpose of this study was to investigate the reproducibility of choroidal thickness measurements in normal subjects on 3 spectral domain optical coherence tomography instruments, namely: Zeiss Cirrus HD-OCT (Carl Zeiss Meditec Inc., Dublin, CA), Heidelberg Spectralis (Heidelberg Engineering, Heidelberg, Germany), and Optovue RTVue (Optovue Inc., Fremont, CA). This cross-sectional non-interventional study was performed in a single institution. Images were obtained in 47 eyes of 47 healthy volunteers which age ranged between 23 and 72 without ocular pathology. All subjects were imaged on the fovea using Cirrus HD 1-line raster, Spectralis enhanced depth imaging, and RTVue retina-cross. The choroid was measured subfoveally and at intervals of 500 µm from the fovea nasally and temporally up to 2500 µm. Paired t test, modified Bland–Altman plot, and Pearson’s correlation were used to compare the results. There is no significant difference between the systems for any measurement within 2500 µm either side of the fovea for most points. Inter-observer correlation was strong for RTVue, and moderate in both Cirrus and Spectralis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Yanoff M, Duker JS (eds) (2008) Ophthalmology, 3rd edn. Mosby, Philadelphia

    Google Scholar 

  2. Manjunath V, Taha M, Fujimoto JG et al (2010) Choroidal thickness in normal eyes measured using Cirrus HD optical coherence tomography. Am J Ophthalmol 150(3):325–329

    Article  PubMed  PubMed Central  Google Scholar 

  3. Fujiwara T, Imamura Y, Margolis R et al (2009) Enhanced depth imaging optical coherence tomography of the choroid in highly myopic eyes. Am J Ophthalmol 148(3):445–450

    Article  PubMed  Google Scholar 

  4. Margolis R, Spaide RF (2009) A pilot study of enhanced depth imaging optical coherence tomography of the choroid in normal eyes. Am J Ophthalmol 147(5):811–815

    Article  PubMed  Google Scholar 

  5. Ramrattan RS, van der Schaft TL, Mooy CM et al (1994) Morphometric analysis of Bruch’s membrane, the choriocapillaris, and the choroid in aging. Invest Ophthalmol Vis Sci 35(6):2857–2864

    CAS  PubMed  Google Scholar 

  6. Ho M, Liu DT, Chan VC et al (2013) Choroidal thickness measurement in myopic eyes by enhanced depth optical coherence tomography. Ophthalmology 120(9):1909–1914

    Article  PubMed  Google Scholar 

  7. Park K-A, Oh SY (2013) Choroidal thickness in healthy children. Retina 33(9):1971–1976

    Article  PubMed  Google Scholar 

  8. Ikuno Y, Kawaguchi K, Nouchi T et al (2010) Choroidal thickness in healthy Japanese subjects. Invest Ophthalmol Vis Sci 51(4):2173–2176

    Article  PubMed  Google Scholar 

  9. Regatieri CV, Branchini L, Carmody J et al (2012) Choroidal thickness in patients with diabetic retinopathy analyzed by spectral-domain optical coherence tomography. Retina (Philadelphia, Pa.) 32(3):563

    Article  Google Scholar 

  10. Spaide RF (2009) Age-related choroidal atrophy. Am J Ophthalmol 147(5):801–810

    Article  PubMed  Google Scholar 

  11. Chung SE, Kang SW, Lee JH et al (2011) Choroidal thickness in polypoidal choroidal vasculopathy and exudative age-related macular degeneration. Ophthalmology 118(5):840–845

    Article  PubMed  Google Scholar 

  12. Gemenetzi M, De Salvo G, Lotery A (2010) Central serous chorioretinopathy: an update on pathogenesis and treatment. Eye 24(12):1743–1756

    Article  CAS  PubMed  Google Scholar 

  13. Imamura Y, Fujiwara T, Margolis R et al (2009) Enhanced depth imaging optical coherence tomography of the choroid in central serous chorioretinopathy. Retina 29(10):1469–1473

    Article  PubMed  Google Scholar 

  14. Wu L, Alpizar-Alvarez N (2013) Choroidal imaging by spectral domain-optical coherence tomography. Taiwan J Ophthalmol 3(1):3–13

    Article  Google Scholar 

  15. Maruko I, Iida T, Sugano Y et al (2011) Subfoveal choroidal thickness after treatment of Vogt–Koyanagi–Harada disease. Retina 31(3):510–517

    Article  PubMed  Google Scholar 

  16. Reibaldi M, Boscia F, Avitabile T et al (2011) Enhanced depth imaging optical coherence tomography of the choroid in idiopathic macular hole: a cross-sectional prospective study. Am J Ophthalmol 151(1):112–117

    Article  PubMed  Google Scholar 

  17. Spaide RF, Koizumi H, Pozonni MC (2008) Enhanced depth imaging spectral-domain optical coherence tomography. Am J Ophthalmol 146(4):496–500

    Article  PubMed  Google Scholar 

  18. Brown JS, Flitcroft DI, G-s Ying et al (2009) In vivo human choroidal thickness measurements: evidence for diurnal fluctuations. Invest Ophthalmol Vis Sci 50(1):5–12

    Article  PubMed  Google Scholar 

  19. Huang D, Swanson EA, Lin CP et al (1991) Optical coherence tomography. Science 254(5035):1178–1181

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Ikuno Y, Tano Y (2009) Retinal and choroidal biometry in highly myopic eyes with spectral-domain optical coherence tomography. Invest Ophthalmol Vis Sci 50(8):3876–3880

    Article  PubMed  Google Scholar 

  21. Branchini L, Regatieri CV, Flores-Moreno I et al (2012) Reproducibility of choroidal thickness measurements across three spectral domain optical coherence tomography systems. Ophthalmology 119(1):119–123

    Article  PubMed  Google Scholar 

  22. Yamashita T, Yamashita T, Shirasawa M et al (2012) Repeatability and reproducibility of subfoveal choroidal thickness in normal eyes of Japanese using different SD-OCT devices. Invest Ophthalmol Vis Sci 53(3):1102–1107

    Article  PubMed  Google Scholar 

  23. Mrejen S, Spaide RF (2013) Optical coherence tomography: imaging of the choroid and beyond. Surv Ophthalmol 58(5):387–429

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the University of Malaya under the Research Grant Number RP006F-13HTM. The authors would like to thank Jie Ming Yeo for editing the manuscript and Choung Min Ng for providing statistical data.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chiang Ling Koay.

Ethics declarations

Conflict of interests

There is no competing interests or financial disclosures.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Koay, C.L., Quo, M.J. & Subrayan, V. Reproducibility of choroidal thickness measurements in subjects on 3 spectral domain optical coherence tomography machines. Int Ophthalmol 37, 655–671 (2017). https://doi.org/10.1007/s10792-016-0306-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10792-016-0306-4

Keywords

Navigation