Skip to main content

Advertisement

Log in

Effect of obstructive sleep apnea syndrome on corneal thickness

  • Original Paper
  • Published:
International Ophthalmology Aims and scope Submit manuscript

Abstract

Obstructive sleep apnea syndrome (OSAS) might be a risk factor for the development of eye disorders. The aim of the study was to evaluate the effect of OSAS on central corneal thickness (CCT). A total of 195 patients were enrolled in the study, and underwent polysomnography. Patients were divided according to their apnea-hypopnea index (AHI) scores into control group (AHI < 5), mild (AHI, 5–15), moderate (AHI, 15–30), and severe OSAS (AHI > 30) groups. In ophthalmological examinations, CCT, auto refractometer measurement, tear break-up time, and Schrimer’s test results were evaluated. Central corneal thickness was significantly decreased in patients with OSAS compared to the control group (542.14 ± 31.21 vs. 569.92 ± 13.46, p < 0.001). As the severity of OSAS increased, CCT decreased (mild OSAS = 567.48 ± 23 mm, moderate OSAS = 530.21 ± 30.2 mm, and severe OSAS = 557.97 ± 16.52 mm, respectively, p < 0.001). The mean values of auto refractometer, tear break-up time, and Schrimer’s test were similar between the groups (p > 0.05). CCT was negatively correlated with AHI, oxygen desaturation index, desaturation percentages, and positively correlated with minimum oxygen saturation values (p < 0.05). This study showed that central corneal thickness is inversely correlated with the severity of OSAS. OSAS affects all organ systems particularly cardiovascular and neurological mechanisms. Further studies are warranted to evaluate the effect of OSAS treatment on CCT.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. McNicholas WT, Bonsigore MR (2007) Management Committee of EU COST ACTION B26. Sleep apnoea as an independent risk factor for cardiovascular disease: current evidence basic and research priorities. Eur Respir J 29:156–178

    Article  CAS  PubMed  Google Scholar 

  2. Grover DP (2010) Obstructive sleep apnea and ocular disorders. Curr Opin Ophthalmol 21:454–458

    Article  PubMed  Google Scholar 

  3. McNab AA (2007) The eye and sleep apnea. Sleep Med Rev 11:269–276

    Article  PubMed  Google Scholar 

  4. Fraser CL (2014) Obstructive sleep apnea and optic neuropathy: is there a link? Curr Neurol Neurosci Rep 14:465

    Article  PubMed  Google Scholar 

  5. Carbonaro F, Hysi PG, Fahy SJ, Nag A, Hammond CJ (2014) Optic disc planimetry, corneal hysteresis, central corneal thickness, and intraocular pressure as risk factors for glaucoma. Am J Ophthalmol 157:441–446

    Article  PubMed  Google Scholar 

  6. Yo C, Ariyasu RG (2005) Racial differences in central corneal thickness and refraction among refractive surgery candidates. J Refract Surg 21:194–197

    PubMed  Google Scholar 

  7. Miglior S, Albe E, Guareschi M, Mandelli G, Gomarasca S, Orzalesi N (2004) Intraobserver and interobserver reproducibility in the evaluation of ultrasonic pachymetry measurements of central corneal thickness. Br J Ophthalmol 88:174–177

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Gordon A, Boggess EA, Molinari JF (1990) Variability of ultrasonic pachometry. Optom Vis Sci 67:162–165

    Article  CAS  PubMed  Google Scholar 

  9. Yeter V, Sönmez B, Beden U (2012) Comparison of central corneal thickness measurements by Galilei Dual-Scheimpflug analyzer and ultrasound pachymeter in myopic eyes. Ophthalmic Surg Lasers Imaging 43:128–134

    Article  PubMed  Google Scholar 

  10. American Academy of Sleep Medicine Task Force (1999) Sleep-related breathing disorders in adults: recommendations for syndrome definition and measurement techniques in clinical research. The report of an American Academy of Sleep Medicine Task Force. Sleep 22:667–689

    Google Scholar 

  11. Berry RB, Brooks R, Gamaldo CE, Harding SM, Marcus CL, Vaughn BV (2012) The AASM manual for the scoring of sleep and associated events: rules, terminology, and technical specification, 1st edn. American Academy of Sleep Medicine, Westchester

    Google Scholar 

  12. Takama N, Kurabayasi M (2009) Influence of untreated sleep disordered breathing on the longterm prognosis of patients with cardiovascular disease. Am J Cardiol 103:730–734

    Article  PubMed  Google Scholar 

  13. Fletcher EC (2003) Sympathetic overactivity in the etiology of hypertension of obstructive sleep apnea. Sleep 26:15–19

    PubMed  Google Scholar 

  14. Karakucuk S, Goktas S, Aksu M et al (2008) Ocular blood flow in patients with obstructive sleep apnea syndrome (OSAS). Graefes Arch Clin Exp Ophthalmol 246:129–134

    Article  PubMed  PubMed Central  Google Scholar 

  15. Faridi O, Park SC, Liebmann JM et al (2012) Glaucoma and obstructive sleep apnoea syndrome. Clin Exp Ophthalmol 40:408–419

    Article  Google Scholar 

  16. Aref AA (2013) What happens to glaucoma patients during sleep? Curr Opin Ophthalmol 24:162–166

    Article  PubMed  Google Scholar 

  17. Mohsenin A, Mohsenin V, Adelman RA (2013) Retinal vascular tortuosity in obstructive sleep apnea. Clin Ophthalmol 7:787–792

    Article  PubMed  PubMed Central  Google Scholar 

  18. Bilgin G (2014) Normal-tension glaucoma and obstructive sleep apnea syndrome: a prospective study. BMC Ophthalmol 14:27

    Article  PubMed  PubMed Central  Google Scholar 

  19. Dhillon S, Shapiro CM, Flanagan J (2007) Sleep-disordered breathing and effects on ocular health. Can J Ophthalmol 42:238–243

    Article  PubMed  Google Scholar 

  20. Abdal H, Pizzimenti JJ, Purvis CC (2006) The eye in sleep apnea syndrome. Sleep Med 7:107–115

    Article  PubMed  Google Scholar 

  21. Jin HJ, Li CG (2013) Tanshinone IIA and cryptotanshinone prevent mitochondrial dysfunction in hypoxia-induced H9c2 cells: association to mitochondrial ROS, intracellular nitric oxide, and calcium levels. Evid Based Complement Alternat Med 2013:610694

    PubMed  PubMed Central  Google Scholar 

  22. Efron N, Ang JH (1990) Corneal hypoxia and hypercapnia during contact lens wear. Optom Vis Sci 67:512–521

    Article  PubMed  Google Scholar 

  23. Karakucuk S, Mujdeci M, Baskol G, Arda H, Gumus K, Oner A (2012) Changes in central corneal thickness, intraocular pressure, and oxidation/antioxidation parameters at high altitude. Aviat Space Environ Med 83:1044–1048

    Article  CAS  PubMed  Google Scholar 

  24. Bergmanson JPG (1982) Chu LW-F. Corneal response to rigid contact lens wear. Br J Ophthalmol 66:667–675

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Taylor CT (2008) Interdependent roles for hypoxia inducible factor and nuclear factor-kappaB in hypoxic inflammation. J Physiol 586:4055–4059

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Lema I, Sobrino T, Durán JA, Brea D, Díez-Feijoo E (2009) Subclinical keratoconus and inflammatory molecules from tears. Br J Ophthalmol 93:820–824

    Article  CAS  PubMed  Google Scholar 

  27. Purvin VA, Kawasaki A, Yee RD (2000) Papilledema and obstructive sleep apnea syndrome. Arch Ophthalmol 118:1626–1630

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Handan Inonu Koseoglu.

Ethics declarations

Conflict of Interest

None of the authors has conflict of interest with this submission.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Koseoglu, H.I., Kanbay, A., Ortak, H. et al. Effect of obstructive sleep apnea syndrome on corneal thickness. Int Ophthalmol 36, 327–333 (2016). https://doi.org/10.1007/s10792-015-0122-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10792-015-0122-2

Keywords

Navigation